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1 Introduction: A Standard Musical
Instrument Model

A natural starting point for the study of any physical
system is linearisation—Ileading to great simplification is
terms of analysis, and also, in the computer age, to design
flexibility and algorithmic simplification in simulation. The
acoustics of musical instruments is no exception. One
question, then, is: how much of the behaviour of a given
instrument can be linearised? The only clear answer is:
definitely not all of it. The production of musical sound
by an instrument, whether it is struck, blown, or bowed,
relies critically on a nonlinear excitation mechanism. One
standard model of the musical instrument, then, relies on
a subdivision of the instrument into a nonlinear excitation
mechanism, which is to a good approximation lumped, and a
linear resonator which is distributed, and characterized by a
number of natural frequencies, or modes. Such a model has
been employed, for many particular cases, for some time—a
powerful unified picture emerged, however, with the article
by Mclntyre, Schumacher and Woodhouse [1]. See Figure
1. Such a characterisation has been enormously useful, not
only in investigations in musical acoustics, but also as a
means of arriving at efficient synthesis methods, using modal
representations [2, 3], methods based on transfer function
descriptions [4], or to spectacular effect for certain systems
in 1D when a traveling wave formulation is available,
leading to the digital waveguide formalism [5, 6].
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Figure 1: A diagram representing the constituent parts of a
standard musical instrument model [1].

Yet, over the past 20 years, the view of the role of the
resonator has slowly shifted, at different rates, for all musical
instrument types, to include nonlinear effects. In many cases
the modifications are minor, leading ultimately to slight
differences in timbre, or changes in pitch—but in others,
they are dominant, and a linear model of the resonator
is grossly insufficient to capture the perceptually salient
features of the instrument sound. Linked to the introduction
of such nonlinearities in the resonator is the loss of many
useful simulation techniques based on linear system theory
(though under weakly nonlinear conditions, some interesting
extensions are available, as will be indicated). Nevertheless,
simulation research has proceeded apace; one interesting
unifying concept underlying many new developments has
been the notion of passivity, or the maintenance of an energy
balance—when transferred to a discrete time algorithm, such
a concept leads to robust and flexible algorithm designs.

This paper is intended as a non-technical review of of
some of the interesting and relatively new developments in
research into resonator nonlinearities in a wide variety of
musical instruments. Nonlinear string vibration is covered
first, in Section 2, and then the natural extension to the
vibration of thin plate structures in Section 3. Shock wave

formation in acoustic tubes is discussed in Section 4, and
next the exotic and very new area of distributed collision
between musical instrument components is briefly outlined
in Section 5. Finally, in Section 6, some very general
perspectives on the use of passivity concepts in simulation
are presented.

2 Strings

Linear string vibration, particularly in the case of motion
in one transverse polarisation, and including effects of
bending stiffness and loss, has served as a useful starting
point for many investigations in musical acoustics [7, 8, 9]
and is also extensively used in synthesis [6]. Nonlinear
models of string vibration have a long history—the first
models can be attributed to Kirchhoff [10] and Carrier
[11], and involve a very rough approximation to the
interaction between transverse and longitudinal motion—in
fact, longitudinal motion is not explicitly included in such
models, and its effects (which may be viewed in terms
of either an increase on string length, or an increase in
string tension) are included as an amplitude-dependent
correction to the global wave speed. The primary effect
of the use of such a model, then, is an increase in pitch
with vibration amplitude—or, when losses are present, to
downward pitch glides as amplitude decreases, as in the
case of a pluck or strike. See Figure 2. Such models, after
lengthy investigations by various authors outside of musical
acoustics [12, 13, 14] were employed in musical acoustics
studies by Legge and Fletcher [15] and, for two transverse
polarisations, by Gough [16]. In the synthesis setting, such
effects are sometimes referred to as “tension modulation,”
and have been employed in digital waveguide [17, 18],
Volterra series-based [19, 20] and finite difference [21]
models of high-amplitude string vibration.
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Figure 2: Spectrograms of sound output, for a plucked string
under increasing excitation amplitudes, exhibiting typical
pitch glide effects.

The tension modulation nonlinearity does allow for
characteristic changes in string pitch with amplitude—but
more subtle audible effects require a complete modeling of
the coupled longitudinal/transverse system. In this case,
the longitudinal dynamics are no longer averaged away,
but coupled, pointwise, to the transverse motion. Though
the effects of longitudinal vibration in strings had been
examined previously (see, e.g., [22]), nonlinear “mixing” of
transverse and longitudinal vibration was later identified as
a source of so-called phantom partials in strings vibrating
at high amplitudes by Conklin [23, 24]. See Figure 3. A
model of such nonlinear coupled vibration had long been
available; see, e.g., the concise treatment in Morse and
Ingard [25]. Such a model was later employed by Bank and



Sujbert [26, 27] in a simplified form as a starting point for
a variety of synthesis techniques allowing the emulation of
phantom partials in piano tones. Even more recent work
has concentrated on complete physical models of the grand
piano, incorporating such longitudinal/transverse string
models [28].

transverse spectrum; low amplitude strike

60 T T T T T T
@ 40+ R
o 20+ q
0 C 1 L 1 L 1 L L 4
0 200 400 600 800 1000 1200 1400
freq. (Hz)
transverse spectrum; medium amplitude strike
60 T T T T
@ 40 R
T 20 1
0 1 L 1 L 1 L
0 20 400 600 800 1000 1200 1400
freq. (Hz)
transverse spectrum; high amplitude strike
60 T T T T T T
@ 40+ -
S 20 b
0 L 1 L 1 L 1 L 1
0 200 400 600 800 1000 1200 1400

freq. (Hz)

Figure 3: Spectra for lossless string vibration, under striking
conditions of increasing strength, exhibiting the appearance
of phantom partials.

3 Plates and Membranes

Perhaps the strongest distributed nonlinearity in musical
acoustics is that occurring in thin flat structures, which play
the role of the resonator in instruments such as cymbals and
gongs. When the vibration amplitude is large compared
to the thickness, a linear model is grossly insufficient
to characterize the behaviour of the instrument. Various
characteristic features, including the spontaneous generation
of modes, and the dramatic migration of energy towards
high frequencies were examined, from an experimental and
phenomenological point of view, by various authors (and
especially Rossing [29] and Legge and Fletcher [30]).

As in the case of strings, various models are available.
A direct generalisation of the “tension modulated” string
model, where longitudinal effects are averaged to yield an
effective change in tension, is that due to Berger [31], which
has been used in modal-based synthesis methods for drums
[32]. In the case of strings, the use of more complex models
leads to relatively subtle effects (such as, e.g., phantom
partials). In the case of thin plates, however, such models are
essential. The use of the Foppl-von Karman model [33] for
vibration at moderate amplitudes to explain such phenomena
in musical instruments is relatively recent—see, e.g., Touzé
et al. [34], and has opened the way towards simulation
methods for such objects, through methods such as finite
difference schemes [35], and also modal approaches [36],
and may be extended to the case of curved plates (or shells)
[37, 38] in order to model instruments such as cymbals.
See Figure 4, illustrating the spontaneous generation of
higher frequencies given a smooth initial shape, and a higher
gross rate of vibration. Needless to say, computational costs
associated with such simulations are extreme, regardless of
the method employed.
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Figure 4: Time evolution of a square plate, initialised to its
first linear mode shape (under simply supported conditions)
under linear conditions (at top), and nonlinear conditions (at
bottom).

Interestingly, recent simulation and experimental work
[39, 40] indicates that such effects are also at work in drums
as well (where tension, rather than stiffness is the main
restoring force)—though not leading to the same degree of
departure from the linear model, it is clear that the bright
and noisy timbres of instruments such as toms or bass drums
when struck at high amplitudes are dependent on such
nonlinear effects.

4 Acoustic Tubes

The standard linear model of wave propagation in a
wind instrument is invariably a descendant of the model
of Webster [41], which models one-dimensional wave
propagation in a tube of variable cross-section, and
terminated by a condition modeling radiation—for tubes of
small cross-section, viscothermal wall losses play a non-
negligible role in determining the widths of the impedance
peaks in the spectrum, which in turn is strongly related to
playability, particularly in brass instruments. A variety of
such models are available, generally posed in the frequency
domain in terms of impedance and admittance—see, e.g.,
[42, 43, 44].

At high amplitudes, however, it is now generally accepted
that nonlinear steepening effects occur along cylindrical
segments of the bore. See Figure 5. Such work was initiated
by Hirschberg et al. [45], after earlier observations by
Beauchamp—see [46] for a review. Synthesis applications
were developed by Msallam et al. [47], and Vergez and
collaborators [48]. Such steepening effects are intimately
related to “brassy” timbres at high blowing pressures
[49, 50].

Numerical modeling in this case is a difficult challenge—
though numerical techniques for shock capturing of course
have a very long history (see the early review by Sod [51]),
the difficulty in the musical setting is to design a method
such that the solution is not distorted, perceptually, as
may be the case for certain commonly used techniques
(such as, e.g., artificial viscosity [52]). This difficulty is
alleviated somewhat by the relatively weak strength of
the shocks which form (pressure deviations in a brass
instrument rarely exceed 10% of atmospheric). A greater
difficulty is the complexity of the model, particularly when
variation of the bore profile and viscothermal wall losses
are taken into account. Partial models are available in
this case—see, e.g., [53], for the case of lossless ducts.
Various simulation strategies have been proposed: harmonic
balance techniques are discussed in [54], and time-stepping
methods, for unidirectional waves in [55]. In general, finite
volume methods [56] would appear to be well-suited to this



particular problem.
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Figure 5: Snapshots of the time evolution of a traveling pulse
in a cylindrical tube, illustrating shock wave formation.

5 Distributed Collisions

Collisions play an obvious role in keyboard and
percussion instruments, in which case a hammer [8, 9, 57]
or mallet [58, 59], usually modelled as lumped, comes
into contact with a resonating body such as a string, bar,
membrane or plate. The interaction is nonlinear, and often
modelled using a variant of Hertz’s law of contact (or a
power-law nonlinearity in the compression of the striking
object), perhaps including effects of loss, as per the model
of Hunt and Crossley [60]. For such interactions, the main
effect is that of the reduction in contact time (which is
generally quite short, and on the order of 1-10 ms for most
instruments) with striking velocity, leading to a perceived
brightening of timbre.

But it is clear that there is a wide variety of other
situations in which collisions play an important role, and in
which one or both of the objects in contact must be modelled
as distributed. A basic example is the interaction of a string
in free vibration against a rigid barrier [61], as in the case
of the sitar or timbura [62, 63, 64]. See Figure 6. In these
cases, beyond a brightening of timbre, because the contact
region is distributed there is a time-varying change in timbre,
sometimes accompanied by changes in pitch if the effective
length of the string is shortened at high amplitudes. Other
examples include the pinning of a string against a barrier by
a finger as in the case of the bowed string family [65], and
also against more elaborate barriers such as the fretboard
in the case of the guitar [66]. Perhaps the most dramatic
example of all is that of the snare drum [67], in which case
a multitude of distributed wires are in partial contact with a
membrane, which must also be modelled as distributed.

The collision interaction in these cases is far from
linear—and furthermore, the nonlinearity is not even
approximately smooth, in contrast to the case of inherent
nonlinearities in strings and plates. Such systems have been
approached occasionally in synthesis applications [68, 69];
see [70] for some recent numerical work on a variety of
musical systems involving collisions.
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Figure 6: Snapshots of the time evolution of a string colliding
with a rigid parabolic barrier.

6 Concluding remarks: Passive
Representations and Numerical
Methods

Though there is not space in this short review for a full
look at numerical methods for distributed nonlinear systems,
it is worth taking a look at the concept of passive systems
is miniature, as such representations form a solid design
strategy for various nonlinear systems in musical acoustics;
such representations are heavily used in various different
guises in acoustics simulations, and particularly in sound
synthesis—scattering structures such as digital waveguides
[6], as well as wave digital filters [71] all employ such
concepts (leading to structures based on the ue of delay lines
or shifts, and norm-preserving operations such as adaptors
or scattering junctions). Non-wave based methods may also
be written in a passive form, as in the case of, e.g., finite
difference schemes [72], or other newer formalisms such as
port-Hamiltonian methods [73] applied to musical systems
[74]. of course, outside of musical acoustics, such methods
have a long history in mainstream simulation, in the form of
Hamiltonian integrators [75, 76, 77].

A general passive system obeys a power balance of the

form JH
— = P 1
=0+ M

where here, H = H(f) > 0 is the total stored system energy,
O(1) = 0 is power loss, and P(7) is input power. When the
system is lossless and unforced, it is often referred to as
a Hamiltonian system, and H(f) (the Hamiltonian) itself
is non-negative and conserved. H(?) itself may be broken
down as H = T + V, where T(f) is the system kinetic
energy (almost always a positive definite quadratic form in
the system velocities), and the potential V(f), which, for
nonlinear systems, is usually not a quadratic form, but which
remains non-negative.



If the non-negativity of H and the loss term Q may be
transferred to discrete time, in such a way that the power
balance is preserved from one time step to the next, i.e., as

%( n+l_Hn):_Qn+Pn (2)
where now, H”, Q" and P” are time series indexed by integer
n, and where £ is a time step (possibly varying, but usually
fixed to a given sample rate in acoustics and synthesis
applications), then such a representation becomes a useful
means of bounding of solutions, leading to numerical
stability conditions.

For musical systems, though, some more care is required.
Usually, the system of interest can be linearised—Ieaving
aside the question of nonlinear loss for the moment, this is
general implies a decomposition of the potential energy as

V' = Vinear + Vioniinear (3)

where Vijeqr 18 necessarily a quadratic form. Ideally, one
would like to be able to treat these two terms separately, so
as to be able to design a fine-grained design for the linear
part of the system, and then add in nonlinear effects as a
refinement. This is most straightforward if the linear and
nonlinear potential energy components are separately non-
negative. In other words, the nonlinearity is of a ”hardening”
variety. While this is true for some systems (such as, e.g., the
Kirchhoft-Carrier system, the Foppl-von Karman system,
and some collision models), it is not true for others such
as the system describing coupled longitudinal-transverse
motion of a string. Coming up with an efficient design
under these conditions then becomes a much more difficult
problem, and constitutes a major design challenge. See

Figure 7.
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Figure 7: A revised diagram representing the constituent
parts of a standard musical instrument model, with a
subdivision of the resonator into its linear and nonlinear
parts.

Acknowledgments

This work was supported by the European Research
Council, under grant number StG-2011-279068-NESS.

References

[1] M. Mclntyre, R. Schumacher, and J. Woodhouse. On the oscillations of musical
instruments. J. Acoust. Soc. Am., 74(5):1325-1345, 1983.

[2] D. Morrison and J.-M. Adrien. Mosaic: A framework for modal synthesis.
Computer Music Journal, 17(1):45-56, 1993.

[3] J.-M. Adrien. The missing link: Modal synthesis. In G. DePoli, A. Picialli,
and C. Roads, editors, Representations of Musical Signals, pages 269-297. MIT
Press, Cambridge, Massachusetts, 1991.

[4] S. Petrausch, J. Escolano, and R. Rabenstein. A general approach to block-based
physical modeling. with mixed modeling strategies for digital sound synthesis.
In Proc. IEEE Int. Conf. Acoust., Speech, Sig. Proc., volume 3, pages 21-24,
Philadelphia, Pennsylvania, 2005.

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. O. Smith III. Efficient simulation of the reed-bore and bow-string mechanisms.
In Proceedings of the International Computer Music Conference, pages 275-280,
The Hague, The Netherlands, October 1986.

J. O. Smith III. Physical Audio Signal Procesing. Stanford, CA, 2004. Draft
version. Available online at http://ccrma.stanford.edu/”jos/pasp®4/.

H. Fletcher. Normal vibration frequencies of a stiff string. J. Acoust. Soc. Am.,
36(1):203-209, 1964.

X. Boutillon. Model for piano hammers: Experimental determination and digital
simulation. J. Acoust. Soc. Am., 83(2):746-754, 1988.

A. Chaigne and A. Askenfelt. Numerical simulations of struck strings. 1. A
physical model for a struck string using finite difference methods. J. Acoust.
Soc. Am.,95(2):1112-1118, 1994.

G. Kirchhoff. Vorlesungen iiber Mechanik. Tauber, Leipzig, 1883.

G. F. Carrier. On the nonlinear vibration problem of the elastic string. Quarterly
of Applied Mathematics, 3:157-165, 1945.

D. Oplinger. Frequency response of a nonlinear stretched string. J. Acoust. Soc.
Am., 32(12):1529-1539, 1960.

R. Dickey. Infinite systems of nonlinear oscillation equations related to the string.
Proceedings of the American Mathematics Society, 23(3):459-468, 1969.

R. Dickey. Stability of periodic solutions of the nonlinear string. Quarterly of
Applied Mathematics, 38:253-259, 1980.

K. Legge and N. Fletcher. Nonlinear generation of missing modes on a vibrating
string. J. Acoust. Soc. Am., 76(1):5-12, 1984.

C. Gough. The nonlinear free vibration of a damped elastic string. J. Acoust.
Soc. Am., 75(6):1770-1776, 1984.

V. Viliméki, T. Tolonen, and M. Karjalainen. Plucked-string synthesis algorithms
with tension modulation nonlinearity. In Proc. IEEE Int. Conf. Acoust., Speech,
Sig. Proc., volume 2, pages 977-980, Phoenix, Arizona, March 1999.

T Tolonen, V. Vilimiki, and M. Karjalainen. Modelling of tension modulation
nonlinearity in plucked strings. IEEE Transactions in Speech and Audio
Processing, 8:300-310, 2000.

D. Roze and T. Hélie. Sound synthesis of nonlinear strings using Volterra series.
Presented at the International Congress on Acoustics, Madrid, Spain, September,
2007. Available on CD-ROM.

T. Heélie and D. Roze. Sound synthesis of a nonlinear string using Volterra series.
Journal of Sound and Vibration, 314(1-2):275-306, 2008.

S. Bilbao and J. O. Smith III. Energy conserving finite difference schemes for
nonlinear strings. Acustica, 91:299-311, 2005.

N. Giordano and A. Korty. Motion of a piano string: Longitudinal vibrations and
the role of the bridge. J. Acoust. Soc. Am., 100(6):3899-3908, 1996.

H. Conklin. Piano strings and phantom partials. J. Acoust. Soc. Am., 102:659,
1997.

H. Conklin. Generation of partials due to nonlinear mixing in a stringed
instrument. J. Acoust. Soc. Am., 105(1):536-545, 1999.

P. Morse and U. Ingard. Theoretical Acoustics. Princeton University Press,
Princeton, New Jersey, 1968.

B. Bank and L. Sujbert. Modeling the longitudinal vibration of piano strings.
In Proceedings of the Stockholm Musical Acoustics Conference, pages 143—146,
Stockholm, Sweden, August 2003.

B. Bank and L. Sujbert. Generation of longitudinal vibrations in piano strings:
From physics to sound synthesis. J. Acoust. Soc. Am., 117(4):2268-2278, 2005.

J. Chabassier. Modeling and Numerical Simulation of the Piano through Physical
Modeling. PhD thesis, Ecole Polytechnique, Paris, France, 2012.

T. Rossing and N. Fletcher. Nonlinear vibrations in plates and gongs. J. Acoust.
Soc. Am., 73(1):345-351, 1983.

K. Legge and N. Fletcher. Nonlinearity, chaos, and the sound of shallow gongs.
J. Acoust. Soc. Am., 86(6):2439-2443, 1989.

H. Berger. A new approach to the analysis of large deflections of plates. Journal
of Applied Mathematics, 22:465-472, 1955.

R. Marogna and F. Avanzini. A block-based physical modeling approach to the
sound synthesis of drums. /EEE Transactions on Audio Speech and Language
Processing, 18(4):891-902, 2010.

A. Nayfeh and D. Mook. Nonlinear Oscillations. John Wiley and Sons, New
York, New York, 1979.

C. Touzé, O. Thomas, and A. Chaigne. Asymmetric nonlinear forced vibrations
of free-edge circular plates. Part I. Theory. J. Sound Vib., 258(4):649—-676, 2002.



[35]

[36]

[37]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

(51]

[54]

(53]

(58]

[59]

S. Bilbao. A family of conservative finite difference schemes for the dynamical
von Karman plate equations.  Numerical Methods for Partial Differential
Equations, 24(1):193-216, 2008.

M. Ducceschi. Numerical models for simulation of thin vibrating plates under
wave turbulence régime. PhD thesis, Ecole Polytechnique, 2014.

O. Thomas, C. Touzé, and A. Chaigne. Non-linear vibrations of free-edge thin
spherical shells: Modal interaction rules and 1:1:2 internal resonance. Int. J.
Solids and Structures, 42:3339-3373, 2005.

S. Bilbao. Percussion synthesis using models of nonlinear shell vibration. /EEE
Transactions on Speech and Audio Processing, 18(4):872-880, 2010.

A. Torin and S. Bilbao. Numerical experiments with non-linear double membrane
drums. In Proceedings of the Stockholm Musical Acoustics Conference/Sound
and Music Computing Conference, Stockholm, Sweden, August 2013.

A. Torin and M. Newton. Nonlinear effects in drum membranes. In Proceedings
of the International Symposium on Musical Acoustics, LeMans, France, July
2014.

A. Webster.  Acoustical impedance, and the theory of horns and of the
phonograph. Proceedings of the National Academy of Sciences of the United
States of America, 5(7):275-282, 1919.

A. Benade. On the propagation of sound waves in a cylindrical conduit. J. Acoust.
Soc. Am., 44(2):616-623, 1968.

D. Keefe. Acoustical wave propagation in cylindrical ducts: Transmission
line parameter approximations for isothermal and nonisothermal boundary
conditions. J. Acoust. Soc. Am., 75(1):58-62, 1984.

R. Caussé, J. Kergomard, and X. Lurton. Input impedance of brass musical
instruments—comparison between experiment and numerical models. J. Acoust.
Soc. Am., 75(1):241-254, 1984. Note: There is most likely a typographical error
in the second expression for ¥; given on page 244 of this article.
A. Hirschberg, J. Gilbert, R. Msallam, and A. Wijnands. Shock waves in
trombones. J. Acoust. Soc. Am., 99(3):1754-1758, 1996.

J. Beauchamp. Trombone transfer functions: Comparison between frequency-
swept sine wave and human performer input. Archives of Acoustics, 37(4):447—
454,2012.

R. Msallam, S. Dequidt, S. Tassart, and R Caussé. Physical model of the
trombone including nonlinear effects. Application to the sound synthesis of loud
tones. Acta Acustica united with Acustica, 86(4):725-736, 2000.

C. Vergez and P. Tisserand. The brass project, from physical models to virtual
musical instruments: Playability issues. In R. Kronland-Martinet, T. Voinier,
and S. Ystad, editors, Lecture Notes in Computer Science: Computer Music
Modeling and Retrieval, volume 3902, pages 24-33. Springer, Berlin/Heidelberg,
Germany, 2006.

A. Myers, J. Gilbert, R. Pyle, and D. Campbell. Nonlinear propagation
characteristics in the evolution of brass musical instrument design. In
Proceedings of the International Congress on Acoustics, Madrid, Spain,
September 2007.

A. Myers and D. Campbell. Brassiness and the characterization of brass musical
instrument designs. The Newsletter of the Acoustical Society of America, 18(3),
2008.

G. Sod. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. Journal of Computational Physics, 27(1):1-31,
April 1978.

B. Gustaffson, H.-O. Kreiss, and J. Oliger. Time Dependent Problems and
Difference Methods. John Wiley and Sons, New York, New York, 1995.

P. LeFloch and M. Westdickenberg. Finite energy solutions to the isentropic euler
equations with geometric effects. Journal de Mathematiques, 88:1-31, 2007.

J. Gilbert, L. Menguy, and D. Campbell. A simulation tool for brassiness studies.
J. Acoust. Soc. Am., 123(4):1854—1857, 2008.

B. Lombard, D. Matignon, and Y. Le Gorrec. A fractional burgers equation
arising in nonlinear acoustics: theory and numerics. In Proceedings of the 9th
IFAC Symposium on Nonlinear Control Systems, Toulouse, France, September
2013.

R. Leveque. Finite Volume Methods for Hyperbolic Problems.
University Press, Cambridge, UK, 2002.

Cambridge
A. Stulov. Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Am.,
97:2577-85, 1995.

A. Chaigne and V. Doutaut. Numerical simulations of xylophones. I. Time
domain modeling of vibrating bars. J. Acoust. Soc. Am., 101(1):539-557, 1997.

L. Rhaouti, A. Chaigne, and P. Joly. Time-domain modeling and numerical
simulation of a kettledrum. J. Acoust. Soc. Am., 105(6):3545-3562, 1999.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

K. Hunt and F. Crossley. Coeflicient of restitution interpreted as damping in
vibroimpact. ASME J. Appl. Mech., pages 4405, June 1975.

D. Kartofelev, A. Stulov, H.-M. Lehtonen, and V. Vilimédki. Modeling a vibrating
string terminated against a bridge with arbitrary geometry. In Proc. Stockholm
Musical Acoust. Conf., Stockholm, Sweden, August 2013.

J. Kappraft R. Burridge and C. Morshedi. The sitar string, a vibrating string with
a one-sided inelastic constraint. SIAM J. Appl. Math., 42(6):1231-1251, 1982.

S. Siddiq. A physical model of the nonlinear sitar string. Arch. Acoust.,37(1):73—
79, 2012.

C. Vyasarayani, S. Birkett, and J. McPhee. Modeling the dynamics of a vibrating
string with a finite distributed unilateral constraint: Application to the sitar. J.
Acoust. Soc. Am., 125(6):3673-3682, 2010.

C. Desvages and S. Bilbao. Physical modeling of nonlinear player-string
interactions in bowed string sound synthesis using finite difference methods. In
Proceedings of the International Symposium on Musical Acoustics, Le Mans,
France, July 2014.

S. Bilbao and A. Torin. Numerical simulation of string-barrier collisions: The
fretboard. In Proceedings of the 17th International Conference on Digital Audio
Effects, Erlangen, Germany, September 2014.

S. Bilbao. Time domain simulation of the snare drum. J. Acoust. Soc. Am.,
131(1):914-925, 2012.

E. Rank and G. Kubin. A waveguide model for slapbass synthesis. In Proc.
IEEE Int. Conf. Acoust., Speech, Sig. Proc., pages 443-446, New Paltz, New
York, October 1997.

A. Krishnaswamy and J. O. Smith III. Methods for simulating string collisions
with rigid spatial obstacles. In IEEE Workshop on Appl. of Signal Processing to
Audio and Acoust., pages 233-236, New Paltz, New York, October 2003.

S. Bilbao, A. Torin, and V. Chatziioannou. Numerical modeling of collisions in
musical instruments, 2014. Under review, Acta Acustica united with Acustica.

A. Fettweis. Wave digital filters: Theory and practice. Proceedings of the IEEE,
74(2):270-327, 1986.

S. Bilbao. Numerical Sound Synthesis. John Wiley and Sons, Chichester, UK,
2009.

A. van der Schaft. Port-hamiltonian systems: an introductory survey. In
Proceedings of the International Congress of Mathematicians, Madrid, Spain,
2006.

N. Lopes and T. Hélie. A power-balanced model of a valve exciter including
shocks and based on a conservative jet for brass instruments: Simulations
and comparisons with standard models. In Proceedings of the International
Symposium on Musical Acoustics, Le Mans, France, 2014.

D. Greenspan. Conservative numerical methods for ¥ = f{(x).
Computational Physics, 56:28-41, 1984.

Journal of

J. Simo, N. Tarnow, and K. Wong. Exact energy-momentum conserving
algorithms for symplectic schemes for nonlinear dynamics. Comp. Meth. Appl.
Mech. Eng., 100:63-116, 1992.

E. Hairer, C. Lubich, and G. Wanner. Geometrical Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. Springer,
The Netherlands, second edition, 2006.



