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In most of models of brass instruments (and also of the glottis), the jet is governed by an equation of Bernoulli type

(with basic, non stationary or lossy versions). In this exciter part, this model is known to be of first importance

because it is responsible for the non-linearity which allows the emergence of self-oscillations. However, this

model infringes a fundamental physical property: it does not preserve a well-posed power balance between the

reed (possibly lip-reed) and the jet. In particular, the energy stored in the reed is not given back to the jet. In the

case of brass instruments and of the glottis, a second similar problem is concerned with shocks, when they are

modeled by increasing the values of the mass, damper and spring for negative heights. Indeed, at the contact time,

both the kinetic and the potential energies are artificially increased. In this paper, we propose a model of a valve

exciter which includes shocks, with a special care to a well-posed power balance: first, the model of the jet is built

for basic assumptions; second, a model of shocks is proposed. These models can be recast in the framework of

the so-called ”port-Hamiltonian systems” which guarantees well-posed power-balance. Finally, simulations (that

preserve a discrete-time version of the power balance) are performed for these new models and compared with

standard models.

1 Introduction

Many models of brass instruments are available [1, 2].

These systems are known to be self-oscillating, due to the

nonlinear coupling involved by the jet between the lips.

The movements of the lips operate as a modulator of the

aperture, that allows the generation of audible air pulse

trains. However, many of the traditionally-used jet models

do not properly handle the power exchange between the jet

and the lips, in the sense that they discard the transverse

component in the velocity field of the jet. Indeed, in this

case, the velocity field is unable to transmit a mechanical

work in the transverse direction.

In [3], we proposed a well-posed power balanced

model of a jet based on a macroscopic representation of

an unsteady analytic 2D flow. To this end, we adopted

a so-called ”Port-Hamiltonian System” formalism which

guarantees the passivity. This evidenced the kinetic energy

of the jet as well as the pumping volumetric flows incurred

by the movement of the lips. However, the channel closure

and shocks were not included in the model of jet as they

represented a particular issue. In this work we propose

a way to handle cases of shocks with a power-balanced

approach. This paper is organized as follows: In section 2,

a simplified model of a brass instrument is presented, and

a full explanation of the power issue is done. In section 3,

we describe the Port-Hamiltonian System (PHS) formalism

used in this work, including a proof of the power balance

property. Section 4 is devoted to the derivation of models of

each organ of the complete instrument under PHS forms. In

section 5, a numerical scheme conserving the power balance

is proposed as well as a strategy to handle shocks. Finally,

in the last section, results obtained from the simulations are

discussed.

2 Global description and problem

statement

We consider a musician (M) interacting through a

jet (J) with an acoustic resonator of the instrument (I). The

complete system is idealized and composed of the following

seven elementary organs (see figure 1):

(A) Air source: one ideal pressure supply,

(L) Lip: one parallelepipedic mass-spring-damper system,

(F) Flow: one 2D irrotational incompressible flow,

(T−,+) Turbulences: two generators of losses (T+ is located

downstream at the interface J↔I and T− is located

upstream at the interface M↔J),

(B) Bore: one conservative 1D acoustic straight pipe,

(R) Radiation: one radiation load of resistive type.

The corresponding models are detailed in section 4.
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Figure 1: Sketch of the complete system comprised of a

musician (M) interacting through a jet (J) with the acoustic

resonator of an instrument (I): (a) overview; (b)

representation of the power exchanges between elementary

organs.

Compared to many models of wind instruments in the

literature [4, 5], this work focuses on the design of the

non-linearity which is responsible for the self-oscillations,

according to two issues: (i) to improve the realism (here, the

interaction between the intrument and the player through the

jet), and (ii) to guarantee a fundamental physical property

(here, the passivity of the jet).

The traditionally-used models of the jet are based on

Bernoulli-type equations, for various assumptions on the

flow: steady or unsteady cases, and with or without a

pumping flow due to the valve movement (see e.g. [6, 7]

for a review). In these models, only those that include a

pumping volumetric flow can be related to a power balance

(see e.g. [8] for the clarinet). However, even in this case, the

mechanical work done by the lip on the jet is not properly

transfered into the jet, but directly distributed to the acoustic

pipe. In [3], we proposed to consider the power exchanges

at the boundary between the lip and jet, the state of which is

characterized by the fields of pressure and velocity. Under



the assumptions on (F), this approach has naturally made

the flow of the jet appear as a component that stores kinetic

energy. The influence of the kinetic energy (stored in the

flow) on the dynamics of the complete system has been

evidenced. From a general point of view, these properties

of passivity are naturally supported by the formalism of the

so-called port-Hamiltonian systems. They are introduced

just below.

3 Port-hamiltonian systems: basics

and introductory examples

This section provides some introductory elements about

Port-Hamiltonian systems [9, 10]. An introduction, similar

to that given below, for audio electronic circuits and their

simulation can be found in [11].

3.1 Formalism

Consider a physical system composed of (see figure 2a)

• NS storage components: the energy of each

component i (1 ≤ i ≤ NS ) is Ei = hi(xi) ≥ 0 (typically,

for a spring with stiffness k, the state x can be chosen

as its stretching length ℓspring, so that h(x) = 1
2
kx2);

• ND dissipative components: the dissipative power is

D j = r j(w j) ≥ 0 (typically, for a viscous damper

with coefficient c, the variable w can be chosen as the

velocity vdamper, so that r(w) = c.w2);

• NP external ports, with incoming power Pn for each

port n.

Denoting efforts e (for example, force, pressure or

voltage) and flows f (velocity, volumetric flow or electric

current), the power received by a system is given by the

product e. f , for standard receiver conventions. For storage

components, these quantities are related to dhi

dxi
and dxi

dt
in the

sense that the received power is the time variation of the

stored energy so that the product ei. fi is also
dhi

dxi
.

dxi

dt
=

dEi

dt
.

These relations give the constitutive laws: for a spring the

flow f = dx
dt

is the velocity vspring and the effort e = dh
dx

(= kx)

is the force Fspring. For dissipative components, a similar

mapping is based on the factorization r j(w j) = w j.z j(w j):

for a damping, the flow f = w is the velocity and the effort

e = d.w = z(w) provides the force. For external ports,

we arrange efforts en and flows fn in two vectors: one is

considered as an input, denoted un, and the other one as the

associated output, denoted yn, so that Pn = yn.un.

Given a system with the graph of the connections of

its components, physical laws (Newton’s laws of motion,

Kirchhoff’s laws for electronics, etc) provide the relations

between all the efforts and the flux. Gathering these relations

defines a so-called Port-Hamiltonian System (PHS) which,

based on the definitions introduced above, appears to be

governed by (see [10] for a detailed presentation)





dx
dt

w

−y




=





Jx −K Gx

KT Jω Gw

−GT
x −GT

w Jy





︸                       ︷︷                       ︸

S

.





∇H(x)

z(w)

u




, (1)

where matrices Jx, Jw, Jy (and so S) are skew-symmetric.

Function ∇H : RNS → R
NS denotes the gradient of the

total energy E = H(x) =
∑NS

i=1
hi(xi) w.r.t. the state

x = [x1, . . . , xNS
]T . Function z : RND → RND denotes the

collection of functions z j w.r.t. the vector w ∈ RnD so that

the total dissipated power is D = z(w)T .w =
∑ND

j=1
r j(w j).

The incoming power is P = uT .y where u = [u1, . . . , uNP
]T

and y = [y1, . . . , yNP
]T are the inputs and the outputs

corresponding to external ports.

Property 1 (Passivity) The time variation of the total

energy E = H(x) is

dE

dt
= −D + P (2)

Proof: Rewrite (1) as B = S.A. As S is skew-

symmetric, 0 = AT .S.A = AT .B = ∇H(x)T . dx
dt
+ z(w)T .w −

uT .y = dE
dt
+D− P.

3.2 Example: a mass-damper-spring system

Consider the mechanical system composed of:

• NS = 2 storage components: first, a solid with mass

m (we choose here the state x1 as the momentum pmass =

m.vmass, with kinetic energy h1(x1) = 1
2m

x2
1
); second,

a spring with stiffness k as in § 3.1 (x2 = ℓspring and

h2(x2) = 1
2
kx2

2
);

• Nd = 1 dissipative component: a damper with

coefficient c as in § 3.1 (w1 = vdamper and D1(w1) = c.w2
1
);

• NP = 1 external port: we choose the input u1 as

the external force Fext applied to the solid so that the

output y1 is the power-complentary quantity, that is,

the velocity vext associated to the port.

Now that theses definitions are introduced, independently

of each other, we consider the graph of the connections of

the complete system described in figure 2. The total energy

is E = H(x) = h1(x1) + h2(x2), the total internal dissipated

power is D = r1(w1) and the total external incoming power

is P = y1.u1.

(a)
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c k

(b)

m −Fext

Fdamper Fspring
vspring

Fmass
vmass

vdamper

−vext

c k

1

Figure 2: (a) Mass-spring-damper system subjected to an

external force (with no gravity field). (b) Bond graph

representation of the system

For this system, the left-hand side of (1) is B =
[

dx1

dt
, dx2

dt
,w1,−y1

]T
. It corresponds to the physical

quantities
[

Fmass, vspring, vdamper,−vext

]T
, where Fmass =

dpmass

dt

and vspring =
dℓspring

dt
. The vector on the right-side is

A =
[

∂x1
H(x), ∂x2

H(x), z1(w1), u1]T , where z1(w1) =



r1(w1)/w1 is introduced in § 3.1. Its derivation yields

the power-complementary quantities of B given by
[

vmass, Fspring, Fdamper, Fext

]T
, where Fspring = kℓspring and Fdamper = cvdamper.

From the physical laws, the relations between these two

vectors are





Fmass

vspring

vdamper

−vext





=





0 −1 −1 1

1 0 0 0

1 0 0 0

−1 0 0 0





.





vmass

Fspring

Fdamper

Fext





. (3)

This equation restores the form (1), block by block.

4 Physical models and representation

into PHS forms

This section provides a description of each organ

introduced in §2.

4.1 Musician (M)

4.1.1 Air Supply (A)

The air supply is the only active element of the system.

In this article, we consider that the air pressure supply is

ideal (PA). The power consumed by the system is PA(t) =

PA(t)UA(t) where UA is the power-complementary quantity,

in this case, a volumetric flow.

4.1.2 Lip (L)

The lip (L) is modeled as a mass-spring-damper system

presented in figure 3.

m

F l

FrPl
L
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L

θl

θrc k

ξ

Figure 3: Model of a simplified lip (L).

We use the model described in the example § 3.2 with

the choice of variable
[

ξ̇, ξ
]T

. Using the velocity instead of

the momentum as a state makes the matrix S L dependent of

the mass m but will simplify the connection. Forces applied

on left and right surfaces are F l
L
= S lP

l
L

and Fr
L
= S rPr

L

with S l = Alsin(θl) and S r = Arsin(θr) (see figure 3).

Introducing xL =
[

ξ̇, ξ
]T

, wL =
[

wL

]

, uL =
[

FL, P
l
L, P

r
L

]T
,

y =
[

VL,U
l
L
,Ur

L

]T
,(L) can be formulated into a PHS (1)

where the skew-symmetric matrix S L is :

S L =





0 −1/m −1/m 1/m S l/m −S r/m

1/m 0 0 0 0 0

1/m 0 0 0 0 0

−1/m 0 0 0 0 0

−S l/m 0 0 0 0 0

S r/m 0 0 0 0 0





.

The energy of the system (L) is EL = HL(xL) = 1
2
mξ̇2 +

1
2
k(ξ − ξ0)2 where ξ0 denotes the equilibrium position.

σ

Fs

Figure 4: Illustration of a Hertz-type shock: σ denotes the

crushing of the lip and Fs is the resulting force.

When the channel is closed (ξ < 0), we consider the

crushing of the lip σ ≥ 0. In this paper, the non-linear Hertz

model of shock is used and discribes the energy stored during

a shock as Hs(σ) = 2
5
ασ

5
2 . The dissipated power is linear

and represented by a damper with coefficient ”β” (ws = σ̇

and Ds(σ̇) = βσ̇2). Thus, introducing xL =
[

ξ̇, ξ, σ
]T

, wL =
[

wL,ws

]

, uL =
[

FL, P
l
L
, Pr

L

]T
, y =

[

VL,U
l
L
,Ur

L

]T
,(L) can be

reformulated, including shocks, into a PHS (1) where the

new skew-symmetric matrix S L is :

S L =





0 −1/m Ks/m 1/m Ks/m 1/m S l/m −S r/m

1/m 0 0 0 0 0 0 0

−Ks/m 0 0 0 0 0 0 0

1/m 0 0 0 0 0 0 0

−Ks/m 0 0 0 0 0 0 0

−1/m 0 0 0 0 0 0 0

−S l/m 0 0 0 0 0 0 0

S r/m 0 0 0 0 0 0 0





,

where Ks = 0 when the channel is open and Ks = 1

during the contact. The total energy of the system (L) is EL =

HL(xL) = 1
2
mξ̇2 + 1

2
k(ξ − ξ0)2 +Hs(σ).

4.2 Jet (J)

The jet is composed of a flow (under the lip) and a

dissipation by turbulence. Turbulences can be activated

upstream and downstream the flow.

4.2.1 Flow (F) and macroscopic form

We consider an irrotationnal 2D flow of an incompressible

perfect fluid in a time-varying volume Ω(t) = ℓζξ(t) where

ℓ and ζ denote the length and the width of the channel

respectively. This flow is contained between a static wall (at

bottom) and a mobile wall (at the top), so that the transverse

velocities are uniform on these boundaries (see figure 5).

For sake of simplicity, the longitudinal velocities are also

chosen to be uniform on the left and right boundaries: this

assumption makes the corresponding airflows be the product

of these velocities by the areas of the boundaries.

Neglecting the effect of the gravity, velocity and pressure

fields are governed by

∇ × v = 0, (4)

∇.v = 0, (5)

dv

dt
+ ∇(
|v|2

2
) +

1

ρ0

∇(p) = 0, (6)

inside the domain where ρ0 is the air density, and by vy(x, y=

0, t) = 0 and vy(x, y = ξ, t) = ξ̇(t) for all x ∈ [0, ℓ] at the

bottom and top boundaries.
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Figure 5: 2D irrotationnal flow under a mobile wall

(invariant along the axis z): the velocity field

v(x, y, t) = vx(x, y, t)ex + vy(x, y, t)ey.

The general solution for uniform longitudinal velocities

vx at the left and right boundaries is given by (see e.g. [12,

§ 5.5])





vx(x, y, t) = v0(t) −
ξ̇

ξ
x

vy(x, y, t) =
ξ̇

ξ
y,

(7)

and

p(x, y, t) = p0(t) + ρ0

[

1

2
(x2 − y2)

ξ̈

ξ
− x2 ξ̇

2

ξ2
−

(

v̇0 −
ξ̇

ξ
v0

)

x

]

,

(8)

where v0(t) denotes the longitudinal velocity at the left

boundary and p0(t) denotes the pressure at the left bottom

corner. In [3], it has been shown that the model of flow can

be reduced to an equivalent macroscopic description with

average variables (on the volume for the state variables and

on the control surfaces for the external port variables). We

found that the macroscopic model corresponds to a PHS

described by the differential system under the form (1) with:

xF =
[

〈vx〉Ω, 〈vy〉Ω, ξ
]T
=

[

Vx,Vy, ξ
]T

(9)

uF =
[

〈p +
1

2
ρ|v|2〉S − , 〈p +

1

2
ρ|v|2〉S + , S w〈p〉S w

]T
(10)

=
[

P−F , P
+
F , FF

]T
(11)

yF =
[

S −vx(0, t),−S +vx(l, t),−ξ̇
]T

(12)

=
[

U−F ,U
+
F ,VF

]T
(13)

S F = (1 − Kc)





0 0 0
ζξ

η
−
ζξ

η
0

0 0 − 2
ηα

ζl

ηα

ζl

ηα
− 2
ηα

0 2
ηα

0 0 0 0

−
ζξ

η
−
ζl

ηα
0 0 0 0

ζξ

η
−
ζl

ηα
0 0 0 0

0 2
ηα

0 0 0 0





andHF(xF ) = 1
2
η(ξ)V2

x +
1
2
η(ξ)α(ξ)V2

y . Where, 〈 f 〉A(t) =
1
A

∫

A
f (x, y, t)dA denotes the average of a quantity f (x, y, t)

over a surface or a volume A.

Remark 1 (Closed channel) This model is not defined

when ξ = 0. In this work, we choose to considere a closed

channel when ξ = ǫ ≪ 1. When the channel is closed,

Ks = 0 and Vx = Vy = 0.

4.2.2 Viscous losses: Poiseuille’s model

At this point a simple model of viscous losses can be

added using a Poiseuille’s model.

vx(x, y, t) = vmax(
4y

ξ
−

4y2

ξ2
)

Vx(t) = 〈vx(x, y, t)〉Ω =
2

3
vmax

The total dissipated power w.r.t. the state variable Vx in the

flow is:

Dv(Vx) = −

∫

Ω

ρvx(x, y, t)ν∂2
yvx(x, y, t)∂Ω (14)

= 12νρ
lζ

ξ
V2

x (15)

= wvzv(wv) (16)

where wv = Vx, zv(wv) = 12νρ
lζ

ξ
Vx and ν is the kinetic

viscosity. Thereby, the viscous losses can be considered as a

dissipative component which can be added to the flow model

(F).

4.2.3 Turbulences (T+,−)

Numerous experimental studies on model profiles of

vocal cords or lips emphasize that, at the end of the channel

(here, under a lip with an ideal geometry), the flow is

separated from the walls to form a jet and vortices. These

vortices may progressively disintegrate until appearance of

turbulences. This complexity is often simplified introducing

a dissipation of the kinetic energy of the jet [13]. We

consider such a dissipative model (here, total): One (T+)

upstream for a positive volumetric flow, and one (T−)

downstream for a negative volumetric flow. Thereby, we can

easily write the dissipated energy as:

〈
1

2
ρ|v|2〉S − =

1

2
ρ

U−F
2

ξ2ζ2
+

1

2
ρ

4

3
V2

y

〈
1

2
ρ|v|2〉S + =

1

2
ρ

U+F
2

ξ2ζ2
+

1

2
ρ

4

3
V2

y

Remark 2 (Bernoulli-type turbulences) The second term

of the kinetic energy is due to the transverse velocity in the

flow. It is not included in 1D classical models.

Denoting, w− = −U−
F

and w+ = −U+
F

, one can define the

upstream and downstream dissipated power by:

PT = w.(
1

2
ρ

w2

ξ2ζ2
+

1

2
ρ

4

3
V2

y ) i f w > 0

= 0 i f not.



We define the functions of dissipation (T+) and (T−) by:

zT (w) = (
1

2
ρ

w2

ξ2ζ2
+

1

2
ρ

4

3
V2

y )Φ(w)

where Φ(w) is a phenomenological function such that

w.zT (w) > 0 ∀ w ∈ R, w.zT (w) ≪ 1 ∀ w ≤ 0 such that
dzT

dw
(0) is defined.

4.3 Instrument (I)

In this work, we use the instrument part presented in [3]

in which we consider the linear acoustic propagation of plane

waves in a lossless bore with a section s0 and a lenght L0.

The radiation at the exit of the tube is modeled by a load of

resistive type p(L, t) = ZLu(L, t) with real passive impedance

ZL > 0.

5 Simulation

5.1 Numeric scheme preserving the power

balance

5.1.1 Principle

A temporal pattern is applied to the energy to calculate its

discrete version. Then, to maintain the power balance of our

system, we write this variation as a function of the variation

of the state: in other words, we provide the differentiation of

the composition of two functions. dE(t, dt) = Ė(t)dt becomes

δE(t, δt) = E(t + δt) − E(t) and ∂tE = ∂tH(x) = ∇xH
T .∂tx

becomes δH(t, δt) = ∂d
xH(x, δx)T .δx(t, δt). Introducing

the discrete gradient ∂d
xH(x, δx), we achieve a time

discretization informed by the physical parameters of the

system.

The discrete version of the PHS is obtained by replacing

the time derivative and the gradient by their discrete versions.

The discrete power balance follows directly from the skew-

symmetric matrix S . In the general case, the solution of the

discrete gradient is not unique. However, one can define

a unique symmetric version as the average of all possible

versions.

5.1.2 Basic example

Applying this method to the mass-spring-damper

system presented in the example §2.2, we have:

∂d
xH(x, δx) = 1

2
([∂d

xH(x, δx)]1 + [∂d
xH(x, δx)]2) with

[∂d
xH(x, δx)]1 =





H(x1+δx1,x2+δx2)−H(x1,x2+δx2)

δx1
H(x1,x2+δx2)−H(x1,x2)

δx2





[∂d
xH(x, δx)]2 =





H(x1+δx1,x2)−H(x1,x2)

δx1
H(x1,x2+δx2)−H(x1,x2)

δx2





Finally,

∂d
xH(x, δx) =

(
1
m

x1 +
1

2m
δx1

kx2 +
1
2
kδx2

)

(17)

= ∇XH(x) +
1

2

(
1
m

0

0 k

) (

δx1

δx2

)

. (18)

The discrete scheme is informed by the physical

parameters m and k, and the discrete PHS is:





δx1

δt
δx2

δt

w1

−y





=





0 −1 −1 1

1 0 0 0

1 0 0 0

−1 0 0 0





.





∂d
x1
H(x, δx)

∂d
x2
H(x, δx)

z1(w1)

u





.

5.2 Simulation method and shocks

For a sampling period δt = 1/ fs, the discrete PHS

version leads to solve equations involving δX(tk, δt) and

w(tk) (for known x(tk) and u(tk)). We can thus deduce

x(tk+1) = x(tk) + δx(tk, δt) and y(tk+1). In practice,

implicit relations are solved using a Newton-Raphson

type algorithm. For this article, the sampling frequency is

192000Hz. Shocks are handled following steps illustrated

in figure (6). Considering an opened channel Ks = 0,

if ξ(tk) + δξ(tk, δt) < ǫ, δtshock is calculated to have

ξ(tshock) = ξ(tk) + δξ(tk, δtshock) = ǫ. Then, the next step

is calculated with ξ(tk+1) = ξ(tshock) + δξ(tshock, δt) and

Ks = 1. Next steps are computed with Ks = 1 until

ξ(tk) + δξ(tk, δt) > ǫ. Then, δtshock is calculated to have

ξ(tshock) = ξ(tk) + δξ(tk, δtshock) = ǫ. Finally, the next step is

calculated with ξ(tk+1) = ξ(tshock) + δξ(tshock, δt) and Ks = 0.

tc2

tk tk+1

tshock

ǫ

ξk

ξk+1

Ks = 1 Ks = 0Ks = 0

x

t

0

Figure 6: Illustration of the strategy to handle shocks

6 Results

6.1 Issues and first solutions

The connection between organs is done following the

method exposed in [3]. First simulations showed two main

issues concerning shocks.

Channel closure: Kshock = 0→ 1

At the channel closure, an incompressible amount of fluid

must be quickly expelled such as the force applied by the

fluid on the lip becomes high. In such circumstances, the

Newton Raphson algorithm does not converge on a solution.

A temporary solution is to artificially decrease the channel

length.

Channel opening: Kshock = 1→ 0

At the channel opening, a discontinuity is created at

the flow inputs. This causes a peak of the longitudinal

speed of the fluid Vx. In such circumstances, the Newton

Raphson algorithm does not converge on a solution. To cope

with this limitation, the dissipative component based on the



Poiseuille’s model and presented in 4.2.2 is added to the

model of flow.

6.2 First results and discussion

Simulations are done for two models: (M2D) is the 2D

model presented in this work, (M1D) is the Bernoulli-type

model included pumping flows. Simulation parameters are

based on the geometry of the trombone and are given in table

1.

Quantity Label Units Values

Lip thickness/ Channel length l m 0.004

Lip length ζ m 0.025

Lip surfaces (left/right) S l/S r m2 0.000176

Equilibrium position ξ0 m -0.001

Mass of the lip m Kg 0.0015

Damper coefficient c Ns/m 0.161

Natural frequency Hz 85.5

Supply air pressure PA Pa 8000.

Tube radius m 0.025

Tube length L m 1

Radiation coefficient λ -0.9

kinematic viscosity ν m2/s 1.5610−5

Table 1: Parameters for the experiment.

Results are presented in figure 7. We can see that the

system is self-oscillating. Moreover, in this particular

configuration, both models behave similarly.
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Figure 7: Experiment: Curves: (Green-M1D), (Red-M2D).

Opening of the channel ξ w.r.t the time

In other configurations, one could show that the solution

for the channel closure (Ks : 0 → 1) is not efficient to

compute the Newton Raphson algorhytm. Anyway, this

solution does not verify the power balance as a parameter of

the system is artificially modified.

7 Conclusion and perspectives

In this work, we have presented a model of shock

compatible with the model of flow previously given in

[3]. We proposed a strategy for simulations. However, we

saw that the simulation strategy is limited by the Newton

Raphson algorithm.

A solution is currently developed to compute simulations

without Newton-Raphson type algorithm. This future work

will include a model of viscous losses in the flow. It will

not be based on a Poiseuille’s model which is not enough

realistic for such an unsteady flow, but on a boundary layer

model. In addition, a second lip model will permit studies to

be done on double-reed instruments as well as vocal cords.

Finally, an experimental study on artificial mouth [14] will

be led. In this context, this model will be approached with

a control point of view using the energy as a candidate for

Lyapunov function.
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