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Conical brass instruments, such as saxhorns, show an input impedance with almost harmonically distributed peaks,
which allows to play notes whose frequencies approach a harmonic series. Conversely, all brass instruments with
a long cylindrical section (notably trumpet and trombone) have their first impedance peak heavily shifted towards
low frequencies (38 Hz for a trombone instead of 62 Hz if the first resonance frequency was belonging to the
harmonic series formed by the upper peaks). However, trombonists can play the so-called ”pedal note” despite its
frequency close to 62 Hz, around a minimum of the input impedance.
Previous publication showed interesting numerical and experimental results when using alternatively a saxophone
reed and a brass mouthpiece on both a trombone and a saxhorn.
In this paper, we try to reproduce numerically and extend the simulations results with a mouthpiece using
Moreesc, a numerical tool based on the modal decomposition of the bore which allows changing parameters
during the simulation. By simulating brass mouthpiece coupled with modal fits of measured trombone and
saxhorn impedances, we examine this mysterious regime of oscillation. This allows to check the robustness of
this phenomenon regardless of the numerical method. The influence of the number of modes taken into account is
particularly investigated.
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1 Introduction
When playing a brass instrument, most notes are

played by exciting a specific acoustic mode of the bore
of the instrument (corresponding to a peak of its input
impedance). The musician selects the mode by adjusting
the characteristics of the reed -his/her lips- and the static
pressure in the mouth. However, this phenomenon does
not seem to explain the possibility to play some notes,
particularly the so-called ”pedal note” of instruments whose
bore profile is mostly cylindrical (e.g. trumpet, trombone).
Due to this cylindricity, the lower mode of these instruments
is shifted towards low frequencies : for the trombone, the
resonance frequency of the first mode is around 38 Hz,
instead of 62Hz if this mode was belonging to the harmonic
series formed by the upper peaks (which occurs for more
conical bores such as saxhorns); However, experienced
trombone players can produce a note at a frequency close
to the one which would match the ”missing” peak in the
impedance: this is called the pedal note. Figure 1 shows the
difference between the impedances of the instruments used
thereafter in the simulations.

Figure 1: Module of the input impedance of a Saxhorn (red)
and a Trombone (black). Blue vertical lines show the

expected playing frequencies of first regimes. Arrows point
the first and second modes of both instruments, the shift

between first modes is easily noticeable.

Previous work about this particular regime of oscillation
[1] carried out time-domain simulations of this regime with
a quite simple model (reflection function of the instrument,
coupled with a single DOF lips). On the contrary, in this

paper, a modal model of the instrument impedance is used,
with a variable number of modes taken into account. A
single-DOF outward valve, non-linearly coupled with the
bore, models the lips of the musician.

This paper is firstly about using a modal approach
for brass simulation, different from Ref. [1] (which uses
reflection function), validated by comparisons of oscillation
thresholds and emerging frequencies for 1-mode resonators.
Then, the flexibility of the modal expansion model is used
to study the influence of the number of modes taken into
account on the production of the pedal note.

After a description of the model and a presentation
of the tools used in section 2, a set of trombone and
saxhorn simulations are examined in section 3, with detailed
discussion of the relations between the number of modes
taken into account and the playing frequencies in the 4th
section.

2 Model and tools
2.1 Modeling of the instrument

The model presented there have been widely used for
woodwind [2] and brass instruments [3]. The musician’s
lips are represented by a single-degree of freedom oscillator,
defined by the lips’ resonance angular frequency ωr (rad/s),
the damping coefficient qr, the lips stiffness Kr (N/m4) and
the opening area of the lips channel at rest S 0. This gives a
relation between the opening area S (m2) and the difference
between the static pressure in the player’s mouth pmouth and
the acoustic pressure at the inlet of the instrument p(t) (Pa).

d2S
dt2 + qrωr

dS
dt

+ ω2
r (S − S 0) =

ω2
r

Kr
(pmouth − p(t)) (1)

This represents a ”striking outward” valve, which tends
to open when the mouth pressure exceeds the mouthpiece
pressure as described by Helmholtz [4].

As in Ref. [5], the input impedance of the instrument’s
bore is described as a sum of complex modes characterized
by residues Cn and poles sn:

Z(ω) =
P(ω)
U(ω)

=

N∑
n=1

Cn

jω − sn
+

C∗n
jω − s∗n

(2)

A Courtois T149 and an old Couesnon saxhorn have
been measured in Ref. [1] with the CTTM sensor [6], with
the same brass mouthpiece. A sum of complex modes is
fitted on these measurements to 4096 Hz with 15 modes for
the saxhorn and 18 for the trombone (using a least-square
optimization method). The parameters Cn, sn for the five first



Modes Cn sn Qn

Saxhorn
1 5, 5.108+ j.2, 96.106 −12, 2 + j.389, 34 15, 9
2 3, 3.108+ j.3, 61.106 −10, 3 + j.715, 90 34, 9
3 5, 8.108+ j.5, 51.106 −14, 9 + j.1092, 4 36, 6
4 9, 5.108+ j.7, 35.106 −21, 9 + j.1457, 2 33, 3
5 8, 6.108+ j.8, 99.106 −24, 4 + j.1783 36, 6

Trombone
1 5, 3.108+ j.1, 20.106 −12, 9 + j.238, 62 9, 3
2 5, 8.108+ j.3, 54.106 −17, 4 + j.697, 05 20, 1
3 6, 3.108+ j.5, 35.106 −22, 2 + j.1061, 3 23, 9
4 6, 6.108+ j.7, 25.106 −26, 1 + j.1437, 4 27, 6
5 8, 4.108+ j.9, 23.106 −28, 8 + j.1829 31.8

Table 1: Values of the residues, poles and quality factor Qn

of the 5 first complex modes of each impedance

modes are given in Table 1, along with the corresponding
quality factors Qn = |sn|/(−2.Re(sn)) The number of modes
considered for simulations can be chosen by the user.

The air flow u(t) in the channel between the lips is
supposed to follow Bernoulli’s law [3]. Moreover, additional
hypothesis on turbulent dissipation of the jet in the cup of
the mouthpiece leads to :

u(t) =

√
2
ρ

S (t)
√

pmouth − p(t) (3)

where ρ = 1.1851kg/m3 is the air density at 25◦C.

2.2 Time-domain simulation with MoReeSC
All the time-domain simulations were carried out with

a Python library previously developed in the L.M.A :
MoReeSC (Modal Resonator - reed interaction Simulation
Code) [7]. This freely distributed code was specifically
developed for simulating reed or brass music instruments,
allowing temporal evolution of most of the usually fixed
control parameters (including acoustic and reed resonances,
see Ref. [5]).

2.3 Linear stability analysis
A linear stability analysis of the model with a single

acoustic mode has been conducted to estimate the oscillation
pressure threshold and the corresponding emerging
frequency (example in Fig. 3). Comparisons between
this theoretical analysis and time-domain simulations
with 1 mode showed matching oscillation thresholds and
frequencies, and thus validated the simulation tool for both
trombone and saxhorn.

3 Simulations
3.1 Methodology

The set of parameters has been taken from different
sources, particularly [8]. As previously mentioned, the
linear stability analysis guided the choice of a relevant
blowing pressure. The following table presents the
parameters used for all the simulations :

qr S 0 Kr pmouth

4/ωr 8.12e − 6m2 µ.ω2
r/L 500 Pa

where µ = 4kg.m−2 is the surface mass of the lips, and
L = 14mm is the width of the lip channel.

Due to the lack of convincing values of lips resonance
frequency in the literature (measurements seem particularly
complicated), the following simulations were carried out
using linear ramps of this parameter (slope = 4Hz/s).
For each simulation, the median value of the range of
oscillation frequencies is supposed to be the ”natural”
playing frequency. As revealed by [9] the oscillation
thresholds change whether the parameters are stationary
or dynamic. We choose to simulate both increasing and
decreasing resonance frequencies to consider the influence
of the dynamic effects on the oscillation threshold. The main
objective is to estimate the influence of the number of modes
on the sounding of the trombone pedal note, so different
simulations with a various number of modes taken into
account are compared. They are also compared to saxhorn
simulations, providing an instrument whose resonance
frequencies are more harmonically distributed.

3.2 Description
Results of simulations of both a trombone and a saxhorn

are presented, with a various number of modes : firstly,
the maximum possible, which corresponds to the complete
impedance (Figs. 4(a) & 5(a)); then 1 mode (Figs. 4(b) &
5(b)), 2 modes (Figs. 4(c) & 5(c)) and 3 modes (Figs. 4(d)
& 5(d)) to see the influence of a growing number of modes.

Top plot of each figure represents the oscillation
frequencies observed for increasing (blue) and decreasing
(red) lip resonance frequency ( flips = ωr/2π). Resonance
frequency of 1st and 2nd modes are marked (the trombone’s
”harmonic peak”, i.e. half of the second resonance
frequency, is also shown). Then, the acoustic pressure in
the mouthpiece is plotted along with its RMS shape, for
increasing (middle) then decreasing (bottom) flips.

In first mode simulations (Figs. 4(b) & 5(b)), the
oscillation frequency is (almost) driven by the lips resonance
frequency; playing in tune with such an instrument would be
very hard.

As the number of modes grows, a frequency plateau
appears, which shows a more ”natural” behavior : the
oscillation frequency on one regime is mostly driven by the
acoustical resonance, allowing small changes by varying
the lips’ parameters. For the trombone, a curious hysteresis
appears in the oscillation frequency : the playing ranges
highly depends on the direction of the flips slope (Figs. 4(a)
& 4(d)). Starting from 5 modes, a maximum on the RMS
ratio appears, particularly clear for descending slopes (Figs.
4(a) & 5(a)).

3.3 Comparison of normalized frequencies
For each simulation of the first and second regime,

the oscillation frequency fosc is calculated as the median
frequency played ( fmean in Table 2), for upward and
downward slopes of flips. The ratio between this frequency
and the acoustic mode’s resonance frequency allows
comparisons between different resonators. The results are
displayed in Figure 2 and reported in Table 2.

To stick with [1] measurements, similar analysis have
also been made considering the oscillation frequency as
the one where the RMS pressure of the signal reached its
maximum (not shown here). This method show similar
patterns; Moreover, it does not seem very relevant for



simulations with a low number of modes, which do not show
clear RMS peaks (Figs. 4(b) and (c), 5(b) and (c)).

Saxhorn’s first regime ( fmode = 57Hz)
mod fmean fnorm fmean fnorm

Up Down
1 103,5 Hz 1,67 82,92 Hz 1,34
2 89,07 Hz 1,44 74,9 Hz 1,21
3 87 Hz 1,40 79 Hz 1,27
5 84,45 Hz 1,36 75,75 Hz 1,22

10 99,52 Hz 1,6 86,5 Hz 1,4
15 88,3 Hz 1,42 83,85 Hz 1,35

Trombone’s first regime ( fmode = 38Hz)
mod fmean fnorm fmean fnorm

Up Down
1 88,12 Hz 2,32 55,3 Hz 1,46
2 77,02 Hz 2,02 60,65 Hz 1,60
3 72,82 Hz 1,91 59,97 Hz 1,58
5 69,4 Hz 1.83 61,08 Hz 1,60

10 68,5 Hz 1,80 59,87 Hz 1,57
18 67,62 Hz 1,78 58,20 Hz 1,53

Saxhorn’s second regime ( fmode = 114Hz)
mod fmean fnorm fmean fnorm

Up Down
1 145,4 Hz 1,28 139 Hz 1,22
2 135,5 Hz 1,19 124,9 Hz 1,10
3 130,5 Hz 1,14 128 Hz 1,12
5 135 Hz 1,18 127 Hz 1,11
7 131,8 Hz 1,16 126,5 Hz 1,11

Trombone’s second regime ( fmode = 111Hz)
mod fmean fnorm fmean fnorm

Up Down
1 154,5 Hz 1,39 132,8 Hz 1,20
2 138,9 Hz 1,25 129,8 Hz 1,17
3 136,9 Hz 1,23 128,3 Hz 1,16
5 136,4 Hz 1,22 127,8 Hz 1,15
9 136,9 Hz 1,23 127,8 Hz 1,15

Table 2: Oscillation frequencies from simulations of the 2
first regimes of both studied instruments. Note that for 2d

regime, only the modes which are harmonics of the second
one are accounted

4 Discussion
Observing the Figure 2, each instrument seems to have

its own pattern with respect to the increase of N, for both
regimes : trombone’s oscillation frequency monotonously
decreases to a fixed value, while saxhorn’s one has no
monotonicity.

For the trombone’s first regime, the oscillation frequency
decreases towards the ”musically expected” note, somehow
comforting the idea of the importance of higher modes
for the ”pedal note” regime of oscillation. Concerning the
normalized frequencies values, this regime is clearly aside
the three others, with a really higher fosc/ fmode ratio, (circa
2).

For all simulations, the oscillation frequency is well
above the acoustical resonance frequency; a well known

Figure 2: Simulated (normalized) frequencies for different
number of modes taken into account. Dotted lines :

frequencies of the expected note (red) and the acoustic
mode (black). Top left : trombone 1st regime; Top right :
saxhorn 1st regime; Bottom left : trombone 2d regime;

Bottom right : saxhorn 2d regime

Figure 3: Results of Linear Stability analysis on first modes
of the trombone (black) and the saxhorn (red). Top plot: the

pressure thresholds of these modes (for different lips
resonance frequencies). Bottom: the oscillation frequency at

threshold.

limitation of the 1-DOF outward lips model [10] can
explain this partially. Thus, the oscillation frequency of the
saxhorn’s first regime stays around a quite high mean value
of 92Hz (normalized : 1.48 ±0.19), well above the expected
note (Bb0 at 58 Hz). This is consistent with Linear Stability
Analysis results (Fig. 3) showing minimum emergence
frequencies of 74Hz (normalized: 1.19). The gap between
the oscillation frequency and the acoustical resonance is
particularly large on the first regime. The low quality factor
Qn of both instrument’s first mode (see Table 1) could
explain their large frequency ratio. Although the trombone’s
result matches experimental recordings (playing the Bb0 in
tune), the saxhorn’s oscillation frequency doesn’t (Playing



Eb1 instead of Bb0).
The trombone’s first regime, which we are particularly

interested in, shows a peculiar behavior : the fosc/ fmode

ratio for this trombone regime is very high (2.3 to 1.8).
When performing a linear stability analysis, the first
mode’s first emergence frequency is 56.6 Hz (norm. 1.49),
corresponding to the ”pedal note” phenomenon, with an
oscillation frequency well above the acoustic resonance.
This high fosc/ fmode ratio appears even with a 1-mode
input impedance for upward slopes of flips. This deserves
further in-depth analysis, since the production of pedal
notes is historically described as being the result of the
collaboration between the higher modes (closest to the
harmonic series)[11][12].

The results of downward slopes are a bit different: on
trombone’s first regime, the oscillation frequency decreases
well below the resonance frequency of mode 1, which is
intriguing (and pulls the median frequency down). This
might be due to the effects of the dynamic parameters of the
lips (varying flips) but has to be confirmed by further static
simulations.

5 Conclusion
These simulations of sound production on the trombone

and the saxhorn, using an outward model for the lips, reveal
interesting results concerning the lowest playable notes on
brass instruments (namely the 1st and 2nd registers). First
of all, the trombone model is able to produce a Bb0 right in
tune (a pedal note), though the 1st resonance frequency of the
trombone is far below. This result had already been achieved
in [1] with another numerical approach. Moreover, though
it is commonly admitted in the litterature that the production
of a pedal note relies on the cooperation of higher acoustic
modes of the instrument, numerical experiments reveal that
the reduction of the number of acoustic modes taken into
account does not prevent the trombone model from playing a
periodic regime with a fosc/ fmode ratio close to 2, even when
a single acoustic mode is considered. A second interesting
result is that, regarding the 2nd register, both the trombone
and the saxhorn models have comparable normalized playing
frequencies, which is expected since input impedances have
similar characteristics from their 2nd resonance frequencies.

However, questions arise from these numerical
simulations. For example, the fact that the first register
played by the saxhorn model is almost 6 semi-tones
too sharp is questioning. This could be a limitation of the
outward model. Following this hypothesis, one could wonder
if what we called a pedal note in our numerical simulations
is not a simple instability due to the coupling between the
mechanical mode of the lips and the first acoustical mode
of the trombone. The normalized frequency, larger for the
trombone than for the saxhorn, could be explained by a
quality factor 50% lower for the trombone. Thus, further
work is required to confirm that the outward model is able to
produce a pedal note.
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Figure 4: Trombone first regime simulations,
pmouth = 500Pa with respectively 18 (a), 1 (b), 2 (c) and 3
(d) mode(s) taken into account. Top plot : fosc for rising
(blue) and decreasing flips (red), first (black) and second
(cyan) acoustic modes, half of the second acoustic mode
(green). Middle/top plots : radiated sound pressure and

RMS envelope during flips rise/decrease.

(a)

(b)

(c)

(d)

Figure 5: Saxhorn first regime simulations, pmouth = 500Pa
with respectively 15 (a), 1 (b), 2 (c) and 3 (d) mode(s) taken
into account. Top plot : fosc for rising (blue) and decreasing

flips (red), first (black) and second (cyan) acoustic modes.
Middle/top plots : radiated sound pressure and RMS

envelope during flips rise/decrease.


