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Sound synthesis by physical modeling of flute-like instruments has been developed in various contexts and
development environments, from acoustical research to musical applications. The intruments that have atired
most attention among researchers are recorders, organ pipes and flutes. Latin American flutes from the Andean
region show some specific features that are distinctive from these instruments, both from the physical operation
and from the aesthetics of the sound produced. The present study focuses on these closed pipes traditional flutes,
used in open-air rites since pre-Hispanic times in Latin America. Both the power and the timbre structure of the
sound are challenging for physical modeling. The resonant frequencies show a peculiar structure and the closed
pipe induces a recirculation of the portion of the air flux that gets into the pipe, affecting the hydrodynamics of the
jet. The high jet flux, required to play the instrument, produces a flow structure that rapidly becomes turbulent. The
physics of the instrument has been modeled and simulated in a real-time platform to make it available for musical
exploration.

1 Introduction
A flute-like instrument, different from those found in

Europa, was a central object in some pre-hispanic cultures in
South America. They were built in different materials such
as stone, wood or ceramic. They have a peculiar resonator
made out of two (or three) cylinders of different diameters
and precise lengths. They are capable of producing a loud
and vibrant sound called sonido rajado (literally torn sound)
that was very appreciated and still is in some rural villages
in South America. The most delicately crafted of these
type of instruments is the antara, a set of 4 or 5 pipes built
together in a piece of stone or ceramic. It was more than
a musical instrument an important cultural, religious and
social symbol. Throughout this article the physics of the
resonator of an antara-like instrument are described and a
simulation model is proposed and implemented.

2 Acoustic model of the resonator
The resonator is modeled as a closed pipe made out of

two cylindrical sections with different diameters. Figure 1
shows a sketch with the geometry of the instrument and the
definition of the pressure waves.

Figure 1: Complex resonator model

Plane longintudinal waves are assumed inside the
resonator. D’Alembert’s decomposition leads to write the
wave variables as the sum of right traveling and left traveling
functions.

2.1 Two-port junction
At the junction between the two sections of the resonator,

physical constraints must be respected. Flow rate equality
and pressure continuity leads to a relation between traveling
pressure, as detailed in [1].
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2.2 Visco-thermal losses
Visco-thermal losses are described by a complex wave

number:
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ω
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This wave number takes into account the phenomenon of
propagation iωc , dissipation β

r

√
f which is the loss of energy

due to the visco-thermal effect, and dispersion i βr
√

f which
impacts on the resonant frequencies.

2.3 Input admittance
Blanc [2] develop a method to obtain the input admittance

of the resonator:

Yin =
1 + rk(H2 − H1) − H1H2

1 + rk(H2 + H1) + H1H2
(3)

with the transfer functions H j of each cylinder:

H j = e−2k jL j (4)

To evaluate the accuracy of such a model, we have built
a complex resonator prototype, measured its admittance and
compared it with the proposed model.
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Input admittance of a complex resonator :
 comparison between theoretical model and experiment measurements

 

 

Experimental data

Theoretical model

Figure 2: Comparison between the theoretical and LMA
prototype complex resonator input admittance. Prototype
geometry is: L1 = L2 = 28cm, r1 = 9mm and r2 = 5mm

Conformingly to the work conducted in [2], we observe
double admittance maxima. Globally, the theoretical model
reproduces with high accuracy the measurement, especially
in the low-frequency domain. We observe a significant
difference around 4000 Hz, but this may be explained by
a coupling between the prototype and the measurement
device, whose first eigen-frequency is close to this value.
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2.4 Radiation
To complete the acoustic model of the resonator, we need

to take into account the radiation at the open end. We use
the circular plate model. Let a be the plate radius and S its
surface. The radiation impedance is given by Eq. (5)

Zrad = Zc(αr(ka)2 + iαika) (5)

Zc =
ρc
S is the characteristic admittance, αr and αi

depends on the geometry of the equivalent screen around the
plate. In the case of the antara we can set αr to 1/4 but we
leave αi variable to take into account different instruments
size.

This expression is valid until ka = 1 (low-frequency
domain), i.e. for frequencies below 10kHz.

2.5 Resonant frequencies
Resonance is observed when the input impedance of the

resonator is null. From Eq. (3) we obtain the resonance
condition:

tan(=(k1)L1) tan(=(k2)L2) =
S 1

S 2
(6)

This condition only depends on the imaginary part of the
complex wave number. Indeed, the real part of k acts on the
energy loss due to dissipation, not on the frequency peaks
positions.

2.5.1 Resonant frequencies without losses

A first order approximation consists in considering
propagation without any losses. In this case, the wave
number is k1 = k2 = ik = iωc . As in [2] we make the
assumption L1 ≈ L2 ≈ L. Then we formulate the resonance
condition:

cos 2kL = −rk (7)

Eq. (7) can be solved analytically. This leads to the
expression of resonant frequencies of the complex resonator
without losses:

f̃ = f0 ×


3n + 3
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π

arccos rk)

3n + 3
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π
arccos rk)

n ∈ Zwith f0 =
c

6L
(8)

As observed on Figure 2, resonant frequencies are
decomposed in two series that are ”almost” harmonic. It
is interesting to determine a condition to observe a perfect
harmonicity of each series. Those frequencies then form
a single harmonic series where one partial over three is
missing. Such a condition is determined by:

3
2

(1 −
1
π

arccos rk) = 1 (9)

which solution is rk = 1/2. More explicitly, this
corresponds to a ratio between cylinder radius

√
3. We will

refer to it as the lossless ratio.

2.5.2 Resonant frequencies with losses

If we take the losses into account, Eq. (6) becomes:
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with S 1 and S 2 the sections of the cylinders. For a

standard geometry and a high frequency limit of 6000Hz,
then |( L1

r1
−

L2
r2

)β
√

f | ≈ 0.05. We decide then to neglect this
term. The condition becomes equivalent to a second-degree
polynomial in

√
f . The only solution physically admissible

can then be approximated by:
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√
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+
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r2
)

cβ
4πL

(11)

where f̃ refers to the resonant frequencies in the lossless
case. As the distance between fres and f̃ is not constant,
it is impossible to find a condition that leads to a perfect
harmonicity of the series. However, calculation shows
that the lossless ratio cancels inharmonicity for the high
frequencies. We examine more precisely the harmonicity
condition for the first partials (low-frequency domain):

3xk − 1 =
β

2π

√
c
L

(
L1
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+

L2

r2
)(
√

1 + xk − 2
√

1 − xk) (12)

with xk = 1
π

arccos rk. We compute numerically this ratio
for several configurations.
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Figure 3: Ratio between radiuses to fulfill the harmonicity
condition for the first partials. Both r1 and lengths vary.

On Figure 3 we see that a good choice for dimensioning
the resonator consists in taking a ratio between the low-
frequency optimal ratio and the lossless ratio (which is
also an optimal high-frequency value). It ensures a good
compromise and introduces a slight inharmonicity; which
may be responsible for the ganseo, a characteristic beating
of those flutes. Antaras are believed to be constructed with
tools that produce fixed-diameter holes. Then, the length of
the small cylinder is adjusted with a cork until the instrument
maker reaches the appropriate sound. Figure 4 shows this
impact of adjusting the length L2 on inharmonicity I:

I(p) =
fres(p)

p fres(1)
(13)

with p = 1, 2, 4, 5, 7, 8... the partial number.
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Figure 4: Inharmonicity for several values of L2

3 Numerical Implementation of the
resonator

3.1 Visco-thermal losses
Eq. (14) describes the visco-thermal losses as an analogic

filter. We do not take into account propagation because this
phenomenon is numerically implemented as a delay line.

Hlosses = e−β̃
L
r

√
iωβ̃ =

β
√
π

(14)

The main difficulty to find an equivalent numerical filter
of this transfer function is the nonlinear term

√
iω. Current

methods [4] consist in designing a static numeric filter that
approximates it. Such approximation does not allow the user
to modify the parameters of this filter. As we want to keep an
explicit dependence of the filter with respect to the physical
parameters, we propose a new method to approximate the
nonlinear term. We first approximate the exponential:

Hlosses ≈
1 − β̃

2
L
r

√
iω

1 +
β̃
2

L
r

√
iω

(15)

Then, we approximate the term
√

iω with integer powers
of iω. This technique is described in [7] to study fractional
derivative. It consists in an approximation of the function√

iω by piecewise functions of slope 0 and 1 in the log-log
domain. This technique has the advantage of being simple
and efficient. It approximates the nonlinear term with a
stable rational fraction whose coefficients are explicitly
known. The order of approximation has to be set initially.
We choose the standard frequency range [20Hz, 2000Hz]
and a 3-order approximation. Finally, we use the bilinear
transform to obtain a numerical filter. It provides an accurate
approximation of the analogical filter with a low-order,
both in amplitude and phase. We present on Figure 5 the
comparison between those filters. It shows that for a range
of values of L1 the approximation remains robust. Other
tests with L2, radius and β have been run and show the same
accuracy.
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Figure 5: Visco-thermal losses. Comparison between analog
and numerical filters.

3.2 Radiation filter
Radiation is described by its impedance defined Eq. (5).

From this expression we calculate the corresponding
reflection coefficient:

Hrad =
P−

P+
Hrad =

1
4 (ka)2 + iαika − 1
1
4 (ka)2 + iαika + 1

(16)

Then we write it in the numerical domain. A bilinear
transform provides a direct way to compute it, but the result
is highly unstable. So we write the reflection coefficient
in the time domain and then use an approximation of the
derivative, such as described in [6]. The result is a 2-order
filter stable for a radius a < 14 mm.

Hrad,num =
(1 + A − B) + (B − 2A)z−1 + Az−2

(A − B − 1) + (B − 2A)z−1 + Az−2 (17)

with A = ( aFs
2c )2 and B =

aFsαi
c .

Similarly to the visco-thermal losses filter, the
approximation remains accurate while varying geometrical
parameters (see Figure 6).
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numerical, alpha = 0.8488
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numerical filter, alpha = 0.6133
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Figure 6: Numerical and analogical reflexion coefficient for
several values of αi

3.3 General scheme for the resonator
Figure 7 shows the different lumped physical elements

organized to simulate the complete resonator.
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Figure 7: Schematic representation of the synthesis
resonator model

The numbers n1 and n2 represent the number of samples
of the delay line due to the propagation inside the first and
second cylinder. Then can be fractional, therefore fractional
delay lines are implemented as described in [5]. The two-port
junction is implemented according to Eq. (1).

3.4 Synthesis resonator optimization
Exciting the synthesis resonator described above with

an impulse as input is used to measure its admittance. A
good correspondance between the synthesis resonator and
the experimental measurements is observed (see Figure 8).
There are though, some differences between them. These
differences, regarding both resonant frequencies position
and amplitude, come from imperfections of the model or
from the slight error between the analogical model and the
numerical system.

The synthesis program coefficients explicitly depend on
the physical parameters of the flute. Thus we can optimize
the synthesis resonator so that it fits a given input admittance.
This way, we can build a synthesis resonator as close as
possible to a real instrument.

The optimization problem is solved as follow: for an
experimental admittance Yexp, we find Y such as it minimizes
the cost function defined Eq. (18).

C = (|Yexp||Y − Yexp|)2 (18)

The weight factor |Yexp| refines the optimization in the
neighborhood of the resonant frequencies.
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Figure 8: Input admittance amplitude of an antara-like flute.
Comparison between measurement and synthesis, before

and after the optimization.

The test conducted on a real antara-like flute (cf.
Figure 8) shows a very good matching between the

recalibration of the synthesis model and the experimental
data. The residual error can be explained by an imperfection
of the initial acoustic model.

4 Sound synthesis
The model has been implemented in Faust [8], a

functional programming language specifically designed
for real-time signal processing and synthesis. It is also a
practical tool to export the model as a MAX patch, widely
used in the community of computer-music composers.

Synthesis program is implemented for two types of
antara, the two sections antara, and another type of antara
with 3 tubes (see Figure 9). For this last, we simply
adapted the model by adding a two-port junction, delay
lines and adjustments on the filters. Some presets have been
previously defined so that the user has a simple yet complete
control on the parameters.

Figure 9: Screenshot of an antara MAX patch synthesis

The variety of sounds we obtain with those synthesizers
is wide. It goes from very smooth and aeolian flute sound
to dissonant, aggressive and vibrant sound (sonido rajado).
This shows that the model includes all the elements that
explain the production of this particular sound. However,
obtaining it requires a very precise setting of the control
parameters, especially the excitation variables.

5 Conclusion
We proposed a complete model for the resonator of

Andean closed pipes with complex resonators. Resonant
frequencies have been analyzed to highlight the influence
of geometry on those resonances. Such considerations
leads to a better understanding of the elements that need
to be considered when building antara-like instruments,
capable of producing sonido rajado. We have also built a
physically based synthesis program entirely controllable by
the user. This tool provides a test-bed to study the links
between physical parameters and musical aspects as well as
a musically friendly interface to be used by computer-music
composers.
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