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Sound synthesis for continuously excited musical instruments via physical modelling requires, for realism, a time
varying input, simulating the player’s gesture. A two-polarisation physical model of a bowed string is designed,
with bow-string and finger-string nonlinear interactions. The Hunt and Crossley damped collision model is used for
contact interactions in a plane orthogonal to the bow, and a “friction curve” model describes the relative velocity
dependent friction forces in a plane parallel to the bow. A finite difference scheme is implemented for this model,
allowing for numerical simulation of the full system. Sound examples are given to illustrate the range of bowed
string gestures that can be artificially reproduced with such a model.

1 Introduction
Sound synthesis for stringed instruments has employed

physical modeling techniques for almost half a century;
however, in recent years, there has been a tendency towards
increased detail in the models of the underlying processes,
leading, ultimately, to great increases in the quality of
synthetic sound output.

The first attempts at string simulation relied on
discretising and numerically solving the wave equation
[1, 2], but were somewhat restricted by the limited power
of digital computers at the time. Later models such as the
Karplus-Strong algorithm [3] and the more recent and still
widely used digital waveguide formalism, introduced by
Smith in 1985 [4], have produced convincing sound outputs,
while staying computationally efficient enough to allow
real-time synthesis, as reported in [5]. A digital waveguide
simulation of a string relies on modelling forward and
backward travelling waves; it is indeed efficient for linear
time invariant systems, as losses and dispersion can be
lumped at one point.

However, a real string interacts with its environment in
a complex manner. The model proposed here comprises
two polarisations for the transverse motion of the string,
and accounts for three external “objects”: the bow (more
specifically, the bow hair), the player’s finger, and the neck
of the instrument. Their action on the string is covered by a
nonlinear collision model in the vertical polarisation (that
is, in a plane orthogonal to the bowing direction), and a
nonlinear friction curve model in the horizontal polarisation
(in a plane parallel to the bow).

Such a model can be simulated with standard digital
waveguide or modal synthesis techniques with difficulty
(see [6] for an example); the string is subjected to the
action of distributed collision and friction forces. Finite
difference methods [7], while requiring significantly more
computational power, can be used to numerically solve
a system of partial differential equations, while making
minimal assumptions on the form of the solution. This
framework simplifies design in the present setting, where
multiple nonlinear interactions are modelled.

Bowed string instruments rely on a continuous excitation
mechanism, unlike struck or plucked string instruments, and
hence the player’s input is of prime importance throughout
the duration of a note. The playability of virtual instruments
has been extensively investigated by various authors
[8, 9, 10]; bowing gestures can be described by only a few
dynamic parameters. Askenfelt [11, 12] describes a setup for
measuring bow force, velocity, and bow-bridge distance in
typical gestures. More recent attempts at measuring these
parameters for analysis and resynthesis have been achieved
by Demoucron [13] and Maestre [14, 15], in order to map
bowing patterns to mathematical functions to be fed into
a numerical model. A computational physical model such

as the one presented in this paper allows for full dynamic
control over these excitation parameters, hence subtle and
realistic sound synthesis can be achieved.

Section 2 introduces the physical model for a bowed
string, including a description of the nonlinear interactions
at work in both polarisations, namely the contact interaction
and the tangential friction. Section 3 demonstrates synthesis
of sounds through a finite difference implementation of
the physical model, under realistic gesture parameters
reproduction.

2 A two-polarisation string model

2.1 String properties and equations of motion

bow

finger

x

w

u

Figure 1: Choice of coordinates for the model. u and w are
the dependent variables for the horizontal and vertical
displacement of the string, respectively. x is the space

coordinate along the string.

The model consists of a linear stiff string, with frequency
dependent losses, and simply supported boundary conditions;
the choice of coordinates is shown in figure 1. The equations
of motion for the variables w(x, t) and u(x, t) representing
the displacement of the string in the vertical and horizontal
directions at position x ∈ S = [0, L] and time t ∈ R+ can now
be written as:

ρ
∂2w
∂t2 = T

∂2w
∂x2 − B

∂4w
∂x4 − λ1ρ

∂w
∂t

+ λ2ρ
∂3w
∂t∂x2

+ FN − JF fF − JB fB (1a)

ρ
∂2u
∂t2 = T

∂2u
∂x2 − B

∂4u
∂x4 − λ1ρ

∂u
∂t

+ λ2ρ
∂3u
∂t∂x2

− (FN)+ ϕN − JF ( fF)+ ϕF − JB ( fB)+ ϕB (1b)

where (·)+ is equivalent to max(·, 0). As the various surfaces
in contact are not considered adhesive, friction only occurs
when fF(t) and fB(t) are positive. The string has a linear mass
density ρ in kg/m, a tension T in N. B is its bending stiffness,
defined by B = EI0 where E is Young’s modulus of the string
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material in Pa and I0 is the area moment of inertia (for a
cylindrical string, I0 = π

4 r4, with r the radius of the string in
m). λ1 and λ2 are positive coefficients accounting respectively
for the frequency independent and dependent energy losses
intrinsic to the string.
FN(x, t) is the contact force density exerted by the neck

on the string along its length, in N/m. fF(t) and fB(t) are the
contact forces respectively exerted by the finger and bow on
the string; they act over two time-varying spatial distributions
JF(x, t) and JB(x, t), normalised over the length of the string.
For simplicity, this model makes use of Dirac delta functions,
such that the bow and finger act on one point of the string.
The contact forces will be explicitly defined in section 2.2,
along with the friction curves ϕN , ϕF and ϕB.

2.2 Contact interactions in the vertical
polarisation

2.2.1 Contact forces for the finger and bow

The contact forces for the finger and the bow can be
written as a function of a derived potential Φ(t), summed
with a damping term as a function of Ψ(t), allowing strict
energy dissipation, as later demonstrated (see section 2.2.3).

fF =
Φ̇F

∆̇F
+ ∆̇FΨF fB =

Φ̇B

∆̇B
+ ∆̇BΨB (2)

The variables ∆F(t) and ∆B(t) can be interpreted as a
deformation if the colliding object is soft, or a penetration,
if the collision is rigid.

∆F =

∫
S

JFw dx − wF ∆B =

∫
S

JBw dx − wB (3)

wF(t) and wB(t) are respectively the position of the finger
and bow above the string. A choice of expression for the
potential and damping function comes as:

ΦF =
KF

αF + 1
(∆F)αF+1

+ ΨF = KFβF (∆F)αF
+ (4a)

ΦB =
KB

αB + 1
(∆B)αB+1

+ ΨB = KBβB (∆B)αB
+ (4b)

with KF ,KB > 0 and αF , αB > 1. Note that with this choice
of potential, the contact forces effectively reduce to the Hunt
and Crossley damped collision model [16].

This model incorporates the dynamics of the colliding
finger and bow. If their masses are respectively mF and mB,
their vertical positions obey the equations:

mFẅF = fF + fext,F mBẅB = fB + fext,B (5)

with fext,F,B(t) any external forces applied on the finger or bow.
These terms will later be useful when the player’s input on
the bow and finger force is introduced.

2.2.2 Contact force density for the neck

The neck is modelled as a rigid barrier at a distance ε(x)
under the string, with no damping. The contact force density
between the string and the neck can therefore be written as:

FN =
∂ΦN

∂t
/
∂∆N

∂t
ΦN =

KN

αN + 1
(∆N)αN +1

+ (6)

with ∆N(x, t) the penetration, given as:

∆N = ε − w (7)

If KN is a large enough number, the interaction tends
towards a perfectly rigid collision.

2.2.3 Energy analysis for the vertical polarisation

As the two polarisations are not intrinsically coupled,
the energy analysis can be separately performed on each of
the equations from (1). For the vertical polarisation, let us
multiply (1a) by ∂w

∂t and integrate the equation over S, which
yields, after replacing the force terms by their respective
expressions:

Ḣw,s + ḢN + ḢF + ḢB = −Qw + Pw (8)

where

Hw,s =

∫
S

ρ

2

(
∂w
∂t

)2

+
T
2

(
∂w
∂x

)2

+
B
2

(
∂2w
∂x2

)2

dx (9a)

HN =

∫
S

ΦN dx (9b)

HF = ΦF +
mF

2
ẇ2

F (9c)

HB = ΦB +
mB

2
ẇ2

B (9d)

Qw > 0 is the power lost through damping in the string,
finger, and bow, that is:

Qw = λ1ρ

∫
S

(
∂w
∂t

)2

dx + λ2ρ

∫
S

(
∂2w
∂t∂x

)2

dx + ∆̇2
FΨF + ∆̇2

BΨB

(10)
Pw is the power supplied or withdrawn through external

excitation:

Pw = ẇF fext,F + ẇB fext,B + fF

∫
S

w
∂JF

∂t
dx + fB

∫
S

w
∂JB

∂t
dx

(11)
The choice of boundary conditions (simply supported)

leads to the vanishing of the boundary terms in the power
balance. As, by construction, Φ(x, t) > 0 and Ψ(x, t) > 0, in
the absence of driving terms, the system is strictly dissipative.

2.3 Friction interaction in the horizontal
polarisation

2.3.1 Friction curve model

The friction model used here is that of a tangential friction
force induced by the normal forces exerted by the bow, finger
and neck; these normal forces are indeed the nonlinear contact
forces, that are independently given by equation (1a). With
Coulomb friction, the general expression for a tangential force
Ft arising from a normal force Fn is Ft = ϕFn, with ϕ a
coefficient of friction.
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A variation on the original Coulomb friction is used in
this model, that makes use of a dynamic friction coefficient.
It is a widespread practice, especially for bowed string models
[17], to assume that ϕ solely depends on the relative velocity
between the two rubbing objects. Improved models have been
used to describe the bow-string interaction [18, 19]; for the
purposes of this paper, let us restrict attention to a simpler
case, defining a friction curve ϕ(vrel(x, t)) of the form:

ϕ(vrel) =
√

2σvrele−σv2
rel+0.5 + µD

2
π

arctan
vrel

0.02
(12)

where σ > 0 is a free parameter, that can be different for each
separate interaction. µD is the dynamic friction coefficient,
that is the constant value friction takes for large enough
relative velocities; it is usually evaluated, for a rosin coated
violin bow, as µD = 0.3 [19]. Figure 2 shows ϕ(vrel) for
different values of σ. This model is somewhat different from
the common hyperbolic curve, but the continuity at vrel = 0
simplifies the numerical implementation [20]. The relative
velocities of the neck vrel,N(x, t), finger vrel,F(t) and bow
vrel,B(t) with respect to the string are:

vrel,N =
∂u
∂t

vrel,F =

∫
S

JF
∂u
∂t

dx vrel,B =

∫
S

JB
∂u
∂t

dx − vB

(13)
where vB(t) is the transverse velocity of the bow. Note that
the finger and neck are not moving in the horizontal plane,
therefore their transverse velocity is simply zero, and their
relative velocity with respect to the string is the string velocity
itself.
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Figure 2: Shape of the friction curve ϕ(vrel) for different
values of σ.

2.3.2 Energy analysis for the horizontal polarisation

When multiplying equation (1b) by ∂u
∂t and integrating it

over S, a second power balance arises:

Ḣu,s = −Qu + Pu (14)

where Hu,s is analogous to Hw,s defined in (9a):

Hu,s =

∫
S

ρ2
(
∂u
∂t

)2

+
T
2

(
∂u
∂x

)2

+
B
2

(
∂2u
∂x2

)2 dx (15)

Qu > 0 is the power dissipated through both the string
internal damping and the friction between the objects and the
string:

Qu = λ1ρ

∫
S

(
∂u
∂t

)2

dx + λ2ρ

∫
S

(
∂2u
∂t∂x

)2

dx

+

∫
S

vrel,NFNϕN + vrel,F ( fF)+ ϕF + vrel,B ( fB)+ ϕB (16)

Pu is the power supplied to or withdrawn from the system
in the horizontal polarisation, through the bow and finger
motions:

Pu = −vB ( fB)+ ϕB + ( fB)+ ϕB

∫
S

u
∂JB

∂t
dx (17)

FN(x, t) is, by construction, positive for all x ∈ S and
t ∈ R+. The system is thus strictly dissipative, in the absence
of energy supply via the bow displacement, if the friction
curve holds:

vrelϕ(vrel) > 0 (18)

3 Numerical implementation
A two-polarisation, one-dimensional finite difference

scheme is designed for this model. Time is sampled at the
audio rate of 44.1 kHz, and the domain S is discretised
into a collection of N + 1 equally spaced grid points
D = {0; 1; . . . ; N}. As the PDEs are second order in time, the
state of the system at a given time step can be computed from
at least the two previous samples. An energy-conserving
finite difference scheme for a lumped contact problem
has recently been established [21], that we can efficiently
incorporate in this model. The contact force and tangential
friction terms require the solution of two nonlinear systems
at every time step, achieved with the Newton-Raphson
algorithm (see [22] for its application to a similar contact
problem). The output is obtained by successive iterations
of this process; the data is read out as close to the bridge
end as the model allows, in the horizontal polarisation, by
a third order Lagrange interpolation between grid points.
Convolution with a violin body impulse response gives rise
to highly detailed and realistic synthetic sound.

3.1 Helmholtz motion
The simulation of the whole system allows for the full

string displacement to be monitored in both polarisations,
at any time. Typical Helmholtz motion was achieved with
fext,B = 0.2 N and vB = 0.3 m/s in steady state, with the
bow positioned at xB = 0.9L (hence a relative bow-bridge
distance β = 0.1. The travelling of the Helmholtz corner can
be observed in figure 3, with classic stick/slip cycles.

The waveform and relative velocity profile are consistent
with previous experimental findings [23], as shown in figure
4.

The two polarisations can be observed at once by plotting
the string displacement in a 3-dimensional space such as
the one introduced in Figure 1. Figure 5 shows the string
displacement at 3 instants withing a stick-slip cycle, while
stopped by a finger pressing against the neck at three quarters
of its length.
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Figure 3: Evolution of the string motion in the horizontal
polarisation during one stick-slip cycle. The bow is

represented by the vertical red line, moving upwards.

3.2 Gesture reproduction
Bowed string gestures are executed by coordinating a

number of almost independent parameters, some of which are
available for full dynamic control in this model. It is therefore
possible to reproduce a variety of patterns found in bowed
string performance, with the help of carefully coordinated
input time series [13, 15]. Crescendi and diminuendi were
achieved with linear variations of the bow velocity. A vibrato
sound was synthesised with a simple sinusoidal variation
of the finger position while the string was fretted; a linear
variation gives rise to a glissando. The mass compliance of
the bow also permits to simulate bouncing bow strokes, such
as spiccato. A slightly varying bow-bridge distance allows
for more realistic nuances in the synthetic sound; a more
drastic drift towards the bridge end of the string, combined
with an increase in bowing force, leads to a sharper sound,
with increased high frequency content.

4 Conclusion
A two-polarisation physical model of a bowed string was

designed, with nonlinear contact interactions in the vertical
polarisation, and nonlinear friction forces in the horizontal
polarisation. Energy dissipation was demonstrated in the
absence of external excitation. A finite difference scheme was
then established, based on the initial set of partial differential
equations, and implemented to simulate the system.
The resulting output agrees with previous experimental
observations, as Helmholtz motion is obtained under the
right bowing conditions. Such a numerical model requires
a number of coordinated inputs, such as the bow velocity,
bowing pressure, bow-bridge distance, finger position and
force, which are easily and dynamically controlled over the
length of the simulation. One can therefore achieve high
quality sound synthesis, with a great level of realism and a
wide range of reproducible gestures, whether it be bowing
strokes (e.g., spiccato, détaché, crescendo. . . ) or finger
gestures (e.g., vibrato, glissando, etc.).
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Figure 4: Output waveform at the bridge end of the string in
steady state, in the horizontal polarisation, and associated

relative velocity profile.

Full description and improvements on the finite difference
scheme are left to a future publication, with the possible
inclusion of finite width bow and finger. It is not difficult to
imagine the coupling of a string with a bridge via a similar
contact model, as a further step towards a full instrument
physical model. The exploration of the bowing parameters
space for this model is also yet to be fully achieved; the
reproduction of Schelleng [24] and Guettler [25] diagrams
would be one way to study the playability of the numerical
model.

Sound examples obtained with the simulation are
available on http://www.ness-music.eu/target-systems/
more/bowed-string-instruments.
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