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In this paper, we consider a class of simplified smooth bores of wind instruments which are composed of a
mouthpiece, a cylindrical or conical pipe and a bell. The acoustic model under consideration is based on a standard
matrix formalism in the Laplace-Fourier domain for which analytic formula are available. The mouthpiece can be
modeled by the begining of the bore, or more simply, by a volume to be connected to the bore. The acoustic transfer
functions of the bore are derived from the smooth connection of a few lossy acoustic pipes with constant-flared
profiles (governed by a refined curvilinear 1D horn equation) concatenated with a radiation load model, which
is consistent with spherical wavefronts. These models have proved to be relevant, based on a comparison with
measurements on a trombone bell. Then, the geometric parameters of the complete model are optimized according
to a constrained objective function. This function is specially designed in order to optimize acoustic targets. A
special care is devoted to the tuning of the first resonances according to an ideal harmonic sequence. Results are
presented for some typical cylindrical and conical chambers, corresponding to a few sketched instruments without
fingerings, that could correspond to some idealized clarinets, trombones, oboes, saxophones or horns.
This work is part of the ANR project CAGIMA.

1 Outline
This paper is organized as follows. Section 2 gives short

recalls about the realistic acoustic model of pipes which is
used in this paper and introduces some idealized target input
impedances for dissipative quarter wave resonators and half
wave resonators. Section 3 presents the method to optimize
the shape of the realistic pipes, according to the idealized
target impedances, and subjected to constraints on the first
harmonically related resonance frequencies. Section 4 gives
the results. Section 5 ends with conclusions and perspectives.

2 Acoustic model and idealized target
impedances

In this section, we give short recalls about a realistic
acoustic model of pipes with bibliographic information.
Then, we introduce target impedances as those of dissipative
resonators with harmonically related resonance frequencies.
Two cases are considered: one idealized quarter wave
resonator (for straight pipes) and one idealized half wave
resonator (for conical pipes).

2.1 Acoustic model
In this paper, we consider acoustic transfer matrices

derived from a one-dimensional acoustic model of axi-
symmetric pipes with varying cross-section that includes
visco-thermal losses. This model is fully detailed in [1] and
is not described here for sake of conciseness. It is based on:

(i) a change of coordinates that rectifies isobar maps,
combined with an approximation that assumes that
isobars are nearly spherical near the wall of the
pipe (see [2]);

(ii) the modelling of visco-thermal losses through an
equivalent wall admittance (Cremer’s admittance);

(iii) the (C1-regular) smooth connection of pipes with
constant parameters that characterize the losses and
the geometry (straight pipes, conical pipes, flared
pipes and convex chambers);

(iv) a model that approximates the radiation impedance of
a pulsating portion of a sphere (detailed in [3]).

The point (i) restores a horn equation in which the space
variable is not the axial abscissa z but the curvilinear

abscissa ` that measures the length of the profile. The point
(ii) refines (i) and leads to the so-called “Webster-Lokshin”
equation with curvilinear abscissa. The point (iii) yields
transfer matrices which are analytic in the Laplace-Fourier
domain and which depend on a few geometric parameters so
that they are well adapted to optimization issues. Geometric
parameters of each segment n are: the left and right radius
(Rn−1, Rn), the length (Ln) and the constant Υn = R′′(`)/R(`)
which quantifies the curvature of the shape. According to a
benchmark, the point (iv) has be proved to be more accurate
than radation models based on planar geometries [4].
Moreover, points (i-iv) has proved to be relevant based on a
on measurements on a trombone bell [1].

2.2 Target impedance for straight pipes
A conservative straight pipe which is ideally opened at

its end (Zload = 0) is an exact quarter wave resonator. Such
a pipe of length L is characterized by the input impedance
Zin(s) = Zc tanh(τs) in the Laplace domain (s ∈ C+

0 = {s ∈
C s.t. <e(s) > 0}) where τ = L/c0. Its poles are given by
sn = i (2n+1)π

2τ for n ∈ Z. They correspond to resonances with
an infinite quality factor (poles have a zero real part) for a
series of odd harmonics with frequency fn = (2n + 1)/(4τ) =

(2n + 1) c0
4L (n ≥ 0 for positive frequencies).

In this paper, we consider the same series of frequencies
but with a constant damping coefficient ξ > 0, that is,
choosing the target impedance as

Z=
in(s) = Zc tanh(τs + ξ) where τ = L/c0, (1)

(poles are sn = −ξ + i (2n+1)π
2τ ). This impedance is that of

a conservative straight pipe loaded by a purely resistive
impedance Zload smaller than Zc where ξ = atanh(Zload/Zc).

Note that, at frequencies fn, Z=
in has a zero phase since

Z=
in(2iπ fn) = Zc tanh

(
ξ+i(nπ+π/2)

)
= Zc/ tanh(ξ) = Z2

c /Zload

is real and positive.
An example of such a template impedance is displayed in

figure 1.

2.3 Target impedance for conical pipes
The case of truncated conical pipes is more complex.

Consider a conservative conical pipe of length L = L1 + L2,
whose part from the apex to length L1 is removed, and
which is ideally opened at its right end. The poles of
the input impedance of such a truncated conical pipe
are not associated with harmonically related resonance
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Figure 1: Example of an idealized impedance (1) for a
straight pipe (normalized version without Zc): parameters

are chosen such that f1 = 250 Hz for a temperature
T = 20◦C (c0 = 343.4 m.s−1 and L = 343.4 mm) and such

that Z=
in(2iπ fn) corresponds to 30 dB (ξ = 0.0316).

frequencies. However, nearly harmonic ones can be
recovered by adding a mouthpiece, the volume of which
is chosen as that of the missing volume of the cone. In
this case, as detailed in [5], the input impedance is close to
Zin(s) = Zc

[
cotanh(τ1s) + cotanh(τ2s)

]−1
, the poles of which

are sn = i nπ/τ for n ∈ Z, with τ = τ1 + τ2 = L/c0 These
poles correspond to the frequencies of an exact half wave
resonator ( fn = n/(2τ) = nc0/(2L) with n ≥ 1 for positive
ones). In [5], it is specially pointed out that the formula
of this impedance is similar to the input admittance of a
lossless string of length L, excited at L1, if only transverse
waves are considered.

In this paper, similarly to § 2.2 and (1), we introduce
constant damping coefficients ξ1, ξ2 > 0 and choose the
target impedance as

Z<
in(s) = Zc

[
cotanh(τ1s + ξ1) + cotanh(τ2s + ξ2)

]−1
(2)

(poles are sn = −ξ + i nπ
τ

where τ = τ1 + τ2 and ξ = ξ1 + ξ2).
Choosing ξ1 = 0 and ξ2 = ξ > 0 corresponds to an ideal
conservative boundary condition at left and a purely resitive
boundary condition at right.

Note that the choice of this template impedance is
based on a sequence of poles with a constant damping
and harmonically related frequencies fn. However, the
phase of Z<

in at these frequencies is not zero in general: for
(2), the definition of the resonance frequencies based on a
(decreasing) zero phase does not coincide with that based
on the imaginary part of poles (that is the eigenfrequencies).
In this paper, we consider a small truncated part (L1 � L2)
so that a nearly zero phase is recovered: this makes the
two concepts of resonance frequency (zero phase versus
imaginary part of the poles) nearly coincide. Such a template
impedance is displayed in figure 2.

3 Optimization method
In this section, an optimization of the bore geometry

is developed, according to an objective function under
constraints. This function provides a well-suited distance
between a acoustic impedance (a target) and the realistic
model described in § 2.1. It can be used to recover
the smooth shape of resonators from measured iinput
mpedances (see [6]) or, here, to find smooth shapes that are
the closest to idealized target impedances.

Figure 2: Example of an idealized impedance (2) for a
truncated conical pipe (normalized version): the total length
is L = 343.4 mm, ξ = 0.0316 as in figure 1 (ξ1 = 0, ξ2 = ξ)

and L1 = 40 mm.

To establish this tool, a configuration space is first
specified: this corresponds to the “space of possibilities”
(§ 3.1). Second, a set of relevant objective functions is
proposed (§ 3.2), from which a selection will be extracted to
build the final algorithm. Then, as the optimization problem
is nonlinear and non convex, no exact solver is available: the
strategy is to build an algorithm which follows a scenario
with increasing requirements (§ 3.3), that provide usable
results in practice.

3.1 Parameters and configuration space
The model is composed of concatenated segments ended

by an acoutic radiation load. Physical constants are fixed.
For each segment, geometrical parameters are:

• Radius Rl and Rr at extremities,

• Length L,

• Quantity Υ (Υ < 0 for convex chambers, Υ = 0 for
straight and conical pipes, Υ > 0 for flared pipes).

The geometric parameters used for the radiation load
(sphere radius and characteristic angle) are straightforwardly
deduced from the geometry of the end segment. Over 4N
parameters for N segments, smooth junctions (C1-regularity)
fix 2(N − 1) contraints. Hence, the number of degrees of
freedom (DOFs) of the model composed of N segments is

4N − 2(N − 1) = 2N + 2 DOFs. (3)

The free parameters are chosen as follows: radius Rn at each
junction and at extremities (N+1), length Ln (N), and the
slope at the left extremity of the first segment (1).

Furthermore, these parameters must be consistent with
a validity domain due to structural reasons (positive radius,
bounded maximal slope |R′(`)| ≤ 1, which is mapped to a
vertical slope for the axial abscissa z), or due to the validity of
simplifying assumptions (non capilar pipes, curvature radius
of the shape sufficiently large, etc), or even, due to practical
reasons (2mm< R to be defined by the instrument maker,
segment length sufficiently large, etc). In this work, only
bores without convex chambers (straight, conical and flared
pipes) are considered so that Υ ≥ 0. The corresponding
configuration space is summarised in table 1.
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Parameters Constraint DOF

Rn ≥ Rmin = 2.10−3 m +2N

Ln ≥ Lmin = 5.10−3 m +N

Υn ≥ 0 +N

structural continuity −N + 1

structural continuous derivative −N + 1

structural abs(R′) ≤ 1 0

Table 1: Description of the configuration space for N
segments: parameters, constraints and DOFs.

3.2 Objective function
3.2.1 Weighted square error

The proximity between the acoustic target and the
model is measured through an objective function based on a
weighted quadratic error

C(Θ) =

∫ fmax

fmin

EΘ( f )W( f ) d f , (4)

where [ fmin, fmax] is the frequency range on which a
quadratic error EΘ( f ) between the target and the model
(with parameters Θ) is to be minimized, following a local
weight W( f ) (W( f ) = 1 for a uniform weight).

Several alternatives can be used: (i) discrepancy between
normalized input impedances Z = (P/V)/(ρ0c0) or between
the associated reflexion functions R = (Z − 1)/(Z + 1);
(ii) several types of errors (simple or relative errors, or
relative error adjusted with respect to the variance of
measurement errors (see [6] or some uncertainties). These
alternatives are summarized in table 2.

Quadratic error

simple relative relative+adjus.

Zmod

∣∣∣∣Zmod − Ztrgt

∣∣∣∣2 ∣∣∣∣1 − Zmod
Ztrgt

∣∣∣∣2 ∣∣∣∣1 − ZmodZtrgt

|Ztrgt |
2+σ2

∣∣∣∣2
Rin

∣∣∣∣Rmod − Rtrgt

∣∣∣∣2 ∣∣∣∣1 − Rmod
Rtrgt

∣∣∣∣2 ∣∣∣∣1 − RmodRtrgt

Rtrgt+σ2

∣∣∣∣2
Table 2: Quadratic errors E: Zmod and Rmod are associated

with models, Ztrgt and Rtrgt with targets, and σ2 denotes the
variance of measurement errors or some uncertainties.

3.2.2 Constraints on resonances and anti-resonances

A first crucial point is to represent the frequencies of the
first resonances (/anti-resonances) of the target in an exact (a)
or accurate (b) way. Here, these frequencies are defined
by a null phase of the input impedance (dissipation without
reactive term), when decreasing (/increasing).

Two approaches are proposed to reach this objective. The
first one (a) consists in adding as many equality contraints as
selected exact frequencies to the objective function (4). In

the sequel, these constraints of zero crossing phase for the
selected peaks are denoted (ZCP). The second approach (b)
consists in choosing a well-suited weight function W that
emphasize resonances and anti-resonances zones. An
example is

W( f ) =
<e

(
Xtrgt( f )

)2∣∣∣Xtrgt( f )
∣∣∣2 = cos2

(
arg

(
Xtrgt( f )

))
(5)

where Xtrgt can be Ztrgt or Rtrgt.
Note that a third standard approach consists in adding

a penalty function to the objective function. This is not
investigated here.

3.2.3 Practical facilities

For practical reasons, additional constraints can be added
by the user such as bounds on the total length, the maximal
radius, geometrical configuration of extremities (radius,
slope of the shape). These constraints are denoted (UC) in
the sequel.

3.2.4 Summary and remarks

Contraints (ZCP) and (UC) are summarized in table 3.
Each frequency alignment and each contraint of (UC) reduce
the number of DOF by one unit.

Parameter Constraint DOF

K1 frequencies
(resonance/anti)

arg
[
Zmod( fk)

]
= 0 −K1

(adjustable)s.t. arg
[
Ztrgt( fk)

]
= 0

R0, R′0, RN , etc fixed or free (adjust.) −K2

Table 3: Constraints (ZCP) and (CU), summary of DOF.

In practice, for K = K1 + K2 constraints, the number of
DOFs 2N + 2 − K must be sufficiently large to allow the
optimizer to reach a sufficiently low quadratic error on the
frequency range [ fmin, fmax].

3.3 Algorithm
The algorithm is based on a sequence of optimizations of

objectives functions with increasing requirements: at each
step, the initialization is chosen as the result of the previous
step. Contraints due to the configuration space and the user
(UC) are considered from step 1. Contraints (ZCP) are
introduced at step 2. These optimizations under constraints
are performed by using the algorithm SQP [7] (available in
Matlab through function fmincon).

The algorithm is composed of the following sequence:

Step 0: Choice of a rough initialization,
(typically, a set of simple segments such as straight or
conical pipes, the total length of which is adjusted according
to the first peak, or a heuristic choice based on tests and
comparison)

Step 1: Optimization of the (adjusted) relative quadratic
error, applied to the acoustic input impedance Z, under
constraints (CS) et (UC) only,
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Step 2: Optimization of the same objective function under
constraints (CS), (UC) and (ZCP),

Step 3: Idem for the objective function applied to the
reflection function R.

In this sequence, the weight function W is considered to be a
parameter of the algorithm: it is fixed to the uniform weight
(W = 1) or to (5).

4 Results
This section presents results obtained for the target

impedances given by (1) and (2), for quarter wave and half
wave resonators, respectively. The algorithm is tested in
the case where no “acoustic volume” is placed before the
pipe: here, the mouthpiece is supposed to be included in the
profile which is composed of N = 5 segments.

4.1 Quarter wave resonator
We consider the target impedance presented in § 2.2 and

figure 1. The initialization corresponds to R0 = 7.4 mm,
L = 343.4 mm and the profile displayed in figure 3. The
associated (normalized) impedance is displayed in figure 3.

Figure 3: Quarter wave resonator (Step 1): initial profile and
result of the algorithm at step 1.

The optimization algorithm is performed with a uniform
weight (W = 1) and for the frequency range [1, 4000] (in
Hz). The constraint (UC) is limited to R0 = 7.4 mm. The first
step of the algorithm (no constraint on the phase) provide the
profile and the impedance given in figures 3 and 4.

Figure 4: Quarter wave resonator (Step 1): input impedance
of the target and for the initial profile and the optimization at

step 1.

The second and third steps are performed for 5
constraints (ZCP) on the five first zero-crossing phases
(decreasing and increasing). The optimization algorithm
(fmincon) fails to guarantee the constraints (ZCP) if all
parameters Υn are positive, meaning that convex chambers

are required. The final results are displayed in figure 5 for
the profile, figure 6 for the input impedance, and figure 7 for
the input reflection function.

Figure 5: Quarter wave resonator (Step 3): initial profile and
result of the algorithm at step 3.

Figure 6: Quarter wave resonator (Step 3): input impedance
of the target and for the initial profile and the optimization at

step 3.

Figure 7: Quarter wave resonator (Step 3): input impedance
of the target and for the initial profile and the optimization at

step 3.

Note that the bell (typically of a clarinet) is weakened.
This is expected and due to the constant and high quality
factor of the resonances of the target impedance. This makes
the radiated power quite low. In order to increase this power,
the target could be modified. But another interesting way is
proposed in the perspectives.

4.2 Conical pipe
We consider the target impedance presented in § 2.3

and figure 2. The initialization corresponds to R0 = 2 mm,
length L2 = Ltot − L1 = 343.4 − 40 = 303.4 mm, and the
profile displayed in figure 8. The corresponding impedance
is displayed in figure 8. The algorithm is performed in the
same conditions as in § 4.1 and with R0 = 2 mm for the
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Figure 8: Quarter wave resonator (Step 1): initial profile and
result of the algorithm at step 1.

constraint (UC). All the constraints are achieved and the final
results are displayed in figure 9 for the profile, figure 10 for
the input impedance, and figure 11 for the input reflection
function.

Figure 9: Quarter wave resonator (Step 3): initial profile and
result of the algorithm at step 3.

Figure 10: Quarter wave resonator (Step 3): input
impedance of the target and for the initial profile and the

optimization at step 3.

Contrarily to the quarter wave resonator, the constraint
(CPZ) emphasizes the bell, at the end of a quasi-conical pipe.
However, the final radius is large (about 25cm). In order
to obtain a more practicable profile, an upper bound on the
radius in the constraint (UC) has still to be included in a
future work.

5 Conclusion and perspectives
In this paper, a method to improve the harmonicity of

straight and conical acoutic pipes has been presented. This
method is based on the optimization of a realistic lossy
acoustic model of axi-symmetric pipes with smooth shapes,
according to a specially designed objective function and
constraints. The first practical results show that quarter
wave resonators can be related to nearly straight pipes. But,
to reach harmonically related resonances frequencies, they
must include convex chambers. For half wave resonators,

Figure 11: Quarter wave resonator (Step 3): input
impedance of the target and for the initial profile and the

optimization at step 3.

the results make appear a change of conicity at the begining
of the pipe combined with an “emphasized bell”.

In order to go towards the design of musical instruments
in practice, several improvements are concerned with:

• including a maximal radius;
• increasing the number of segments (and so the DOFs)

to refine the results and increase the number of
contraints on the resonance frequencies;

• including holes and their effect on the input impedance
and their external radiation to handle real instruments;

• minimizing of a distance between input impedances
(or input reflexion functions) on a frequency range
[ f1, f2] and maximizing the radiated power beyond f2.
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