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The first hydrodynamic mode of the edge tone according to various publications over the years seemed to have
a different behavior of the frequency f as a function of the stand-off distance L being f ∝ 1/L relationship, in
contrast to the higher hydrodynamic modes which tend to have relationship as 1/L3/2. However a correction is
appropriate due to the center of the feedback dipole field at x = L + ΔL. A new analysis of the precise data opens
the possibility to assess a power being different from either n=1 or n=3/2. A global fit to the data with various
jet thicknesses determines the ΔL and the power n according to f ∝ 1/(L + ΔL)n. The result shows that the ΔL
is in the order of the flue height and n has a value of ≈1.3. Numerical simulations support the insertion ΔL in the
analysis. This result is interesting in view of the theoretical deduction of the edge tone by Crighton which should
be modified by an appropriate evaluation of the dispersion relation and thus changing for Crightons relation the
power from 3/2 to 1.26, in agreement with the experimental findings.

1 Introduction
The edge tone is investigated in numerous papers with

the medium air as well as water. Several papers are dealing
with this phenomenon from the point of view of experiment,
theoretical treatment and simulation. It is also relevant for
the instantaneous speaking of a organ pipe by adjusting the
cut-up so that the edge tone matches some partial of the
resulting sound. A better understanding based on precise
measurements was achieved as the additional extension of
the stand-off length L was introduced with the notion that
the dipole source is not right on the tip, but some effective
distance ΔL beyond the edge [1, 8, 6, 5].
The findings of simple dependence for the first

hydrodynamic mode generally as f ∝ 1/L for different
flue height and corresponding simulation in the paper of
one of the authors [3]. In detail for d =0.5mm a power
of n=1.10±0.04 for the f ∝ 1/Ln is also quoted there.
Already at that time the experimental data being referred to
by several authors show that the power n does depend on
the hydrodynamic mode in such a way that the first mode
had a power n <3/2 [2], and even more striking six years
later citing experimental data in comparison to theoretical
knowledge [4]. The present contribution deals with a
simultaneous determination of
L′ = L + ΔL and the power n.
The result produces, to the knowledge of the author

for the first time, an insight to the validity of Crightons
theoretical deduction of the edge tone relationship which
assumes a low frequency approximation. The extension
towards Strouhal numbers in the order of 1 results in an
essential modification being appropriate for this experiment.
The experimental edge tone data of the first hydrodynamic
mode is commonly terminated in range of L by the jump
into the higher hydrodynamic mode, so precision data are
required.

2 The experimental method and data
taking
The geometry was designed to be close to a flute-like

flue labium configuration because of interest in flute-like
instruments. The channel height of d=1.0mm can be
modified to 0.5mm, see Fig. 1. The span-wise extension
is 10mm. In order to achieve a parabolic velocity profile
the length was chosen safely to be 150mm. The edge with
an angle of 23o is mounted on a movable table allowing a
precision setting in the 50μm range. The pressure signal
on the upper surface of the wedge is measured by a sensor
coupled to the flow close to tip of the edge (Kulite 9332M).

Figure 1: Experimental setup for the edge tone
measurement.

The setup was positioned at ∼20cm above the mounting
table. The micro-meter adjustment in height was in general
ε ≈1/4 of the channel height by maximizing the pressure
signal.
The velocity measurement was achieved with a hot-wire

anemometer (Dantec C35). During the data taking the
anemometer was retracted. The calibration was done with
a Pitot tube. The accuracy of the calibration is estimated
as ±0.5m/s. Because of its sensitivity to environmental
temperature changes constant temperature was required. For
the frequency determination of the fundamental mode f a
spectral analyzer was employed (Tektronix 2642A) with a
precision of < 1%.
The velocity profile of the jet was checked to be parabolic

without wings 1mm downstream from the flue exit, also for
a smaller channel length ∼100mm of the flue. A check with
the Schlieren method revealed that the jet is quasi laminar.
In Fig. 2 the measurements are presented on top for the

data with d=0.5mm and below for the data with d=1.0mm.
The fits are obtained by f ∝ 1/L. Especially for d=0.5mm
the data exhibit a slightly steeper slope than −1 which could
be attributed to a power n >1. The velocities listed are
the maximum of the profile U0 and used further on. Both
distributions show in the log-log plot a negative curvature as
a function of L, especially for the d=0.5mm case. This fact
indicates that the dependence on L should be modified by a
possible displacement of the dipole source from the edge ΔL
[1, 8, 6, 5].

3 Fits forΔL and n all data individually
for each U0
For the fits onto the data the function f /U0 ∝ 1/(L+ΔL)n

with the following parameters ΔL which is a correction of
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Figure 2: The data set is shown as published [3]. The
frequency f is displayed as a function of the stand-off
distance L for two flue heights d=0.5 (upper part) and
d=1.0mm (lower part). The fits provide the guide of eye
with the function f ∝ 1/L. A closer look especially at
d=0.5mm reveals that the data overshoot at small L and

undershoot at large stand-off distance.

the stand-off distance and n the power. For each data set
f /U0 at a given U0 a multiplicative constant is associated
with in order to yield a reasonable χ2. Moreover, considering
the uncertainty of the velocity determination being dominant
compared with other uncertainties a global 5% error is
assigned. An evaluation of the constants in view of the
different flue height of d=0.5mm and d=1.0 is interesting,
however not followed up in this presentation.
Having performed preliminary fits with fixed values for

either ΔL or n at expected values, as 0.5< ΔL <1.0mm or
1< n <3/2, it was found that a common fit for all parameters
is possible. In fact, the ΔL shows up at small L whereas
the power n dominate at large L which helps to achieve a
minimum in χ2. The results of the relevant parameters along
with their errors are documented in Fig. 3 and Fig. 4 for
d=0.5mm and d=1.0mm, respectively.
Finally the average over velocities from error weighted

results of ΔL and n are listed in Table 1.
The stability of the fits is sufficient to reach a χ2

minimum. It should be noted that there is some positive
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Figure 3: The parameters ΔL and n as a function of the
velocity along with its errors are presented for d=0.5 mm.
The weighted mean and its errors are quoted in the header.
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Figure 4: The equivalent of Fig. 3 showing the parameters
ΔL and n for d=1.0mm. The large error bars at U0=6.5m/s

are understood by the data structure.
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flue height ΔL error n error
mm mm mm
d=0.5 1.00 ± 0.09 1.37 ± 0.03
d=1 1.01 ± 0.05 1.22 ± 0.02

Table 1: The fit parameters of the overall constant for a
given velocity the displacement of the effective position of
dipole source beyond the tip of the edge ΔL and as a main

result the power n.

correlation between ΔL and n, which is expected given the
finite range of the edge tone signal in L as explained above.
The correlation of ΔL and n is positive with a ratio of about
5:1, what makes the determination of n trustworthy. The
results were cross checked with the ROOT-fitting routine.

4 Plot of data and numerical simulation
in terms S rL

4.1 Experimental results
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Figure 5: The data set S rL is displayed for d=0.5mm. The
negative curvature at 2< L <4 is indicating that an added ΔL
to the stand-off distance results in a continuous change of
the slope. The asymptotic power of n − 1=0.37 being a

straight line in this plot is reached only far beyond L=8mm.
The solid line which represents the averaged Strouhal

numbers of the numeric simulation for d=0.5mm and which
is based on a 2nd-order polynomial fit is adjusted in scale to

the experimental data.

In order to demonstrate the dependence of f on the stand-
off distance L for different velocities U0 the normalized
frequency called Strouhal number S rL = f L/U0 is shown
in Fig. 5 for d=0.5mm and in Fig. 6 for d=1.0mm. In this
log-log plot the velocity averaged data show a maximum
as a function of log(L) signaling a deviation from a power
law log( f ) = n log(L) + const at low L since in a log-
log plot S rL versus L would appear as a straight line
log(S rL) = (1 − n) log(L) + const. The modification of the
argument with the constant ΔL results in

log(S rL) = log
L

(L + ΔL)n
+ const (1)

Figure 6: The data set S rL is displayed for d=1.0mm. There
is a similar change of the slope as a function of L as for

d=0.5mm. Note that the limit of the L-scale are adjusted so
that scaling of the abscissa as L/d is mimicked. The solid
line indicates the averaged Strouhal numbers of the numeric
simulation which has the correct positive slope. The S rsimL is

scaled up by 30% for this comparison.

Compared to the power law the effect is a diminishing slope
going from large to small L. It creates a maximum at a stand-
off distance ΔL/(n − 1), as seen in Fig. 5 at L=2.7mm and in
Fig. 6 at L=4.6mm.
The case of d=0.5mm indicates that a perfect fit to the

data also at small L is achieved by inserting the displacement
ΔL which is interpreted as an effective dipole source position
beyond the edge. This notion has been mentioned in several
publications [1, 8, 6, 5].
A similar observation is shown for d=1.0mm in Fig. 6. In

contrast to the data for d=0.5mm a continuation far beyond
the maximumwith increasing L is excluded because the jump
to the second hydrodynamic mode occurs at L=8mm.
Note that the abscissa in Fig. 6 is expanded by a factor

of 2. So the abscissa extends to identical ranges of L/d in
both the Figures 5 and 6 according to a proper scaling of the
stand-off distance. Indeed the maximum of S rL appears at
comparable L/d for d=0.5mm and d=1.0mm.

4.2 Numeric simulations
The publication includes numerical simulations as a

major part [3]. The geometrical setup of the apparatus was
exactly implemented, except that the simulation was done
in a 2-dimensional model. The main ingredients are refined
grid structure at edges and the exact divergence treatment
according to the Babuska − Brezzi condition at each cell.
Here 2nd-order polynomial fits to both the sets of the

resulting S rL are shown as solid lines in the Figures 5 and
6. In fact the simulation reproduces the characteristic shape
near the maximum in the log-log plot for d=0.5mm. For the
d=1.0mm case the simulation was not pursued far enough
to reach the maximum in this plot, nonetheless the slope
appears to be in fair agreement with the experimental data.
For comparison reasons the simulated S rL were scaled up
by about 30%.
Finally it should be stressed that the asymptotic power

law 1/Ln−1 is approached only at very large L which is
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not observable because of being the regime of higher
hydrodynamic modes. Fortunately, the smaller jet height of
d=0.5mm serves as an indication of the separation of the ΔL
dominated regime from the onset of the asymptotic regime.

5 Modification of power dependence
and change in final relationship
according to Crighton

5.1 Crightons result 1992
Crighton [2] introduces several simplifications mainly

concerning the geometry of the flow as well as the interaction
between the flue exit and the edge in order to enable an
exact treatment of the jet-edge problem. He mentions
a fair agreement between his prediction S rd/2 ∝ 1/L3/2
and experimental data available at that time, except for
the proportionality factor which is much too high in the
theoretical result. Crighton finds out that the main reason for
this discrepancy is the asymptotic phase velocity of the jet
instability cph = 2U0S r1/3d/2 which is valid only at extremely
low frequencies but is nevertheless adopted in the theory. So
he ends up with

S r′d/2 =
2π f d
2U0

= (d/2L)3/2(4π(N − 3/8))3/2 (2)

S r′L =
2π f L
2U0

= (d/2L)1/2(1.8π(N − 3/8))3/2 (3)

5.2 Modification of Crightons result
With a numerical evaluation of the dispersion relation

cph ≈ 0.9U0Sr0.21d/2 is obtained in the range of the
experimentally observed Strouhalnumbers 0.05 < Srd/2 < 1.
Replacing the asymptotic phase velocity by this more
realistic value yields

S r′d/2 =
2π f d
2U0

= (d/2L)1.26(1.8π(N − 3/8))1.26 (4)

S r′L =
2π f L
2U0

= (d/2L)0.26(1.8π(N − 3/8))1.26 (5)

instead relation (2,3). The relations (4,5) are the
appropriate ones to be compared with this experiment within
the range of Strouhal numbers according to our definition in
this contribution S rL = f L/U0 <0.4. Based on the results
presented in Fig. 5 and Fig. 6 also L is to be replaced by
L′ = L + ΔL.

6 Conclusion
n this investigation extended fits are done onto the data

with the following modifications.

1. The displacement of the effective dipole source
position is added to the stand-off distance L with the
result ΔLd=0.5= 1.00mm and also ΔLd=1.0=1.01mm.
The value for d=0.5 changes with other possible
weighting resulting in ΔLd=0.5=0.8mm. From
estimations [8] the ratio ΔLd=0.5/ΔLd=1.0 ≈1/2 is
expected.

2. The numeric simulation supports the findings of this
modification by reproducing the bump structure for
S rL especially for the d=0.5mm data.

3. The main result of the fits for d=0.5mm and d=1.0mm
is nd=0.5=1.37±0.03 and nd=1.0=1.22±0.03, the above
value based on the dispersion relation of ntheor=1.26
within 9%.

This evaluation of the edge tone of the fundamental
hydrodynamic mode demonstrates for the first time, to the
knowledge of the authors, a dependence of the frequency
of f ∝ 1/(L + ΔL)n close to the theoretical value of n=1.26
which is an justified modification of the relation published
by Crighton in 1992[2]. It should be noted that this power is
expected to hold for many similar experiments dealing with
the first stage, including those using water as a medium for
the edge tone excitation.
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