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Assessing the strike pitch of carillon bells is a difficult task, as this topic is connected with physical and subjective
aspects, which cannot be easily departed. The perceived notes may pertain to actual modal frequencies but, as is
well known, they often arise as virtual pitches. Furthermore, even if definite trends can be extracted from the results
of subjective panel tests for evaluating the importance of the bell partials on the perceived pitches, results obtained
along the carillon tessiture often display a significant dispersion. Therefore, criteria for assessing the bell tuning
properties rely mostly on empirical data and are still a matter of debate. In this paper we address some of these
issues, following our recent quantitative analysis of the two carillons of the Mafra National Palace, which represent
the largest surviving 18th century carillons in Europe. Here, using a developed polyreference modal identification
technique, we extend our previous modal identification results to include the bells higher frequency modes. Hence,
for each carillon bell - which plays a separate note of the instrument -, we obtain charts displaying the frequency
relationships between a set of its most prominent partials. Then, the topic of estimating the perceived pitch and
tuning features of these musical instruments is addressed. We develop an optimization strategy for weighting
the sets of identified modal frequencies with respect to several popular empirical criteria for strike notes, thus
obtaining optimal estimations of the perceived bell pitches for the low register bells of the carillons. Following this
evaluation, the perceived tuning features of the carillons are presented.

1 Introduction
The emitted tone of a bell when struck comprises a

large number of partials which all combine together to
create a resultant pitch. In spite of many efforts devoted
to bell sounds, what the perceived pitch is after striking
still constitutes an unclear issue which appears essential for
assessing the tuning of carillons, where several bells sound
in succession to play melodies and chords. Surprisingly,
and as extensively reported in the literature, neither a bell
partial is required in the sound spectrum where a pitch is
perceived [1]. The actual confusion regarding the so-called
strike pitch of a bell may certainly be attributed to several
side-effects, both acoustical and psychological, among
which the inharmonicity of the higher partials as well as the
human auditory system may play a major role.

For a traditional minor-third bell, it is however commonly
accepted that the strike pitch should coincide with the second
lowest bell partial, referred as to the prime or fundamental
by campanologists, even if such perception does not seem to
have a direct relation with this partial [2]. Actually, for bells
with mistuned partials, it is well known that the strike pitch
often does not correspond to any bell modal frequencies [3].
Of particular interest, these confusing observations raise the
question what criterion should be used for acoustical studies
of the tuning of carillon bells.

Recently, in the framework of an interdisciplinary
research project concerned with the restoration of the largest
surviving 18th century carillon in Europe (Mafra, Portugal),
the present authors developed a systematic approach for
assessing the tuning properties of carillons and proved its
effectiveness to reveal both acoustical and musicological
features [4]. Based on an extensive modal identification
of the bells comprising the instrument, the technique uses
optimization strategies to assert properly the reference tone
and musical temperament to which bell founders tuned
their carillon. The results presented in [4] were obtained
on the basis that the perceived pitch of bell stems from
either one or a combination of its first five physical modes.
By ignoring any perceptual features, such an attempt may
seem crude at first sight but remarkably, one useful aspect
of the proposed methodology is the possibility to handle
easily different tuning criteria, either based on physical or
perceptual concepts.

To develop a feel about the influence of the strike
pitch on the tuning diagnosis of a carillon, we here extend

our previous analysis by testing several empirical strike
note criteria to a selection of bells of the two Mafra
carillons. We focus on bells of lower pitch, with nominal
frequencies in the range 400-1000 Hz, for which our modal
identifications now include higher partials which are of
strong perceptual importance, namely the twelve and upper
octave [5–7]. We then compare three hypothesis for the
determination of the strike pitch, assuming that the pitch
heard of a bell corresponds to: a) half the frequency of
nominal (Rayleigh’s octave rule); b) a difference tone
between nominal and twelve; and c) a virtual pitch at
half the (missing) fundamental frequency created by the
nominal, twelve and upper octave. After an overview
on the perception of bell sound, the experimental modal
identification and the optimization procedures which enables
the estimation of the perceived reference pitch and musical
temperament of a carillon are presented. The methodology
is then applied to a selection of bells of the low register of
the two carillons of Mafra, and results are discussed.

2 Overview on the perception of bell
tones

The strike note of bells has been subject of great
discussion in the literature. When a bell is struck, the
perceived pitch, commonly know as strike note, may not
correspond to any of the physical frequencies present in the
sound spectrum. Despite the influence of carillon’s tessiture
in its perception, it is commonly accepted that, except for the
small bells, the strike pitch is a virtual pitch effect typically
found near one octave below the nominal [2]. Regarding
the dominance region for its occurrence, it is commonly
established that the most contributing frequencies are located
between around 400-2000 Hz.

It was in the beginning of the 17th century that Jacob
Van Eyck first mentioned the existence of a dominant
tone in bells, which he named strike. According to him,
all other tones could be referred to the strike by trained
hearing. For example, if the strike is C5, the desired series
is: C4-C5-Eb5-G5-C6 [8]. However, it was only in the end
of the 19th century that the first scientific studies about
this subject arose, raising a growing interest in several
prominent researchers. Nevertheless, they have shared
different perspectives about the subject, namely about how
to calculate the strike pitch and what partials are associated
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to it. Summarily, four main theories can be identified.
One of the main theories on the strike pitch suggests that

the strike note is an octave below the 5fth partial (nominal).
This hypothesis, commonly known as the“octave rule”, was
first proposed by Lord Rayleigh [3], the first to publish
a systematic investigation on the strike note, in a study
where he realized that the perceived pitch of several bells
did not correspond to any of the experimentally measured
frequencies. Later, other experimenters shared the same
belief, namely Arts [9], Van Heuven [10] and Lehr [11]. In
our days, this rule is still used in practice by most of the bell
founders.

Nevertheless, other perspectives arise from different
investigations. Some believe that the strike note lies close
to a frequency given by the difference between the fifth and
seventh partials [12]. Others associate it to a residual pitch,
a missing fundamental originated by the nominal, twelfth,
and upper octave, which normally have frequency ratios of
approximately 2:3:4 [13–16]. More recently, Terhardt et
al. [17] developed a new theory that takes in account spectral
component patterns and the virtual-pitch theory, combining
them in order to calculate the perceived strike pitch.

3 Experimental modal identification
3.1 In-field vibrational measurements

The tested bells were manually struck on their original
support with an impact testing hammer, at several locations.
For each bell, a mesh of 32 test locations regularly
spaced near the rim was defined and impact excitation
was performed on all of the points. The vibrational
radial responses were recorded with three piezoelectric
acelerometers, coupled to charge amplifiers, and the
acquired time signals were 12 s long. The accelerometers
were glued on the outer rim of the bell, in the same
horizontal plane, at 3 positions. A Siglab/Spectral Dynamics
acquisition board ensures the analog digital conversion. Care
was taken to roughly control the frequency content of each
impact excitation, and because of the large size of the bells,
a specific instrumented impact hammer has been designed
to ensure a proper excitation of the low frequencies. For
each bell, a total of 96 impulse responses functions were
analysed. Ten bells of the lower octave of the two Mafra’s
carillons were tested.

3.2 Modal parameter identification
Modal identification was achieved by implementing a

sophisticated MDOF algorithm, called the Eigensystem
Realization Algorithm [18]. The technique has been
recognized as being very effective for the modal
identification of complex systems. In particular, it provides
good estimates of the modal parameters for structures
presenting repeated eigenfrequencies due to the specifity
of being a general polyreference multi-input/multi-output
approach. The algorithm works in the time domain and is
based on a state space formulation of the system dynamics.
In essence, it attempts to identify a linear mathematical
model to match the impulse responses of the structure
by combining a set of free decay responses in the form
of a generalized Hankel matrix and then uses a singular
value decomposition to estimate the minimum order of the

mathematical model. The last step of the algorithm consists
in computing the eigenvalues of the chosen minimum
model from which the modal parameters of the system are
extracted.

Mathematically, the analytical model considered for the
impulse response hi j measured at j from an excitation at
location i is given by:

hi j(t) =
2R∑

r=1

Ai j
r eλr t (1)

where λr are the complex eigenvalues and Ai j
r are the

complex modal amplitude coefficients, R being the order of
the original system. The modal frequencies ωr and modal
damping value ζr are extracted from the λr noting that:

λr = −ζrωr + jωr

√
1 − ζ2

r ( j2 = −1) (2)

Finally, the modeshapes of the system stem from the
knowledge of the modal amplitude coefficients Ai j

r at each
location along the rim, which can be either computed from
the ERA realization matrices or by least-square fit with
respect to a set of measurements.

In practice, the presence of noise in the input
data perturbs the identifications and in general, it
manifests through the identification of nonphysical modes.
Consequently, the model order should be systematically
overestimated and this makes delicate the estimation of
the model size. To overcome such a difficulty, a stability
diagram was implemented as part of the ERA algorithm.
Tracking the estimates of the modal parameters, as a function
of the model size, is a useful tool to assist in the selection
of the system modes: indeed, the physical modes tend to
stabilize at low model order whereas nonphysical modes do
not stabilize at all during the process because of the random
nature of noise. In addition, the identified modeshapes of
the bell vibrations were also used as an indicator for the
selection of the physical modes. Finally, the overall success
of the estimation procedure is achieved by comparison of the
synthesized and measured impulse response functions and
transfer functions. To illustrate the satisfactory behaviour
of the ERA-based modal identification technique, Figure
1 plots an example of a synthesized impulse response
computed using 20 modes, compared with its respective
measurement.
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Figure 1: Details of the measured (green) and reconstructed
(red) impulse response functions. 20 modes were identified.
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4 Optimisation-based strategy for
reference tuning estimation

Estimating the reference tuning and temperament of
historical carillons is a rather delicate problem due to
the less-than-perfect tuning of some bells forming the
instrument. As presented in [4], the problem is addressed
by devising optimisation strategies, and consists of adjusting
a reference frequency to best fit a musical scale to a set
of frequencies, either physical or virtual, stemming from
the frequencies of the bells’ partials. Mathematically,
it corresponds to the minimization of an error εT which
quantifies the overall detuning of the instrument with respect
to a given temperament T , expressed as:

εT = min ‖ {ST }F0 − {Fmeas} ‖ (3)

where {ST } = {s1, s2, . . . , sn}n=1,...,13 is a vector containing
the musical intervals sn of a given temperament T , F0 is
the reference pitch of the carillon to be adjusted, {Fst} =
{ f1, f2, . . . , fN}t is a vector of the strike pitch of the carillon
bells and ‖ . ‖ is a suitable norm. In practice, the reference
pitch F0 is estimated in the least-square sense and solution is
provided according to:

F0 = {ST }+{Fst} (4)

where the symbol + denotes the Moore-Penrose pseudoinverse
[19]. By sequentially testing several temperaments in Eq.(3),
a set of optimal reference pitches and corresponding fitting
errors is obtained, and finally, the minimization of the set of
errors provides the most plausible temperament as well as
its corresponding reference pitch, to which the carillon is
thought to be tuned.

5 Internal tuning of the studied bells
Before testing any strike pitch theories for the tuning

diagnosis of the Mafra’s carillon, the proper relative tuning
of each bell was analyzed in a systematic manner. We
present here our modal identification results which include,
for each bell, ten bell partials known to strongly contribute
to the strike pitch sensation [14]. The frequency ratios of
these partials are given in Table 1.

From the identified modal frequencies, one can analyze
the relative tuning of individual bell by plotting partials
in a manner which highlights the deviations from perfect
tuning. A global view of the internal tuning of the bells of
the low register of the two northern and southern Mafra’s
carillons is given in Figure 2, where tuning errors are
referred to the identified physical prime. Because one
partial is constituted by a pair of modes, internal deviations
were computed using the mean frequency of the two modal
components. Interestingly, Figure 2 attests a large difference
in tuning qualities between the bells forming the two
carillons, especially for the highest partials. Depending
on the intensity of these partials in the bell sound, the
influence of these higher modes may well contribute to
clear audible differences between the two carillons, a result
which supports the thesis of the poor tuning of the northern
carillon (upper plot), built by N. Levache, which has already
been evidenced by previous studies focusing on the first five
physical modes only [4, 20]. Also, notice for the highest

three partials the slight stretching of the partial series for
the most of the bells from the southern carillon, cast by the
well-known founder W. Witlockx (1669-1733), which has
also been found in other church and carillon bells [2, 5].

Ratio to prime rn

Partial numbers n Partial names Just Equal 1/4 Meantone

1 Hum 0.500 0.500 0.500
2 Prime 1.000 1.000 1.000
3 Third 1.200 1.189 1.196
4 Quint 1.500 1.498 1.495
5 Nominal 2.000 2.000 2.000
6 Twelfth 3.000 2.997 2.991
7 Upper octave 4.000 4.000 4.000
8 Upper fourth 5.334 5.339 5.350
9 Upper sixth 6.667 6.727 6.687
10 Triple octave 8.000 8.000 8.000

Table 1: Relative frequency ratio of important partials for
carillon bells.
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Figure 2: Relative tuning of important bell partials for the
northern (up) and southern (bottom) carillons with respect to
the Just temperament. Each bar refers to one bell.

6 Analysis of the Mafra’s carillons
tuning based on psychoacoustic
pitch criteria

6.1 The Witlockx carillon
The southern tower of the Mafra National Palace contains

one of the rare carillons built by Witlockx which is still
in condition to be played. As presented in [4], its original
bells have partial frequencies nearly in the ratios expected
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for traditional minor-third bells, especially for the low and
middle registers. It therefore appears as a reliable carillon
for examining how the strike pitch of bells may affect the
carillon tuning diagnosis.
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Figure 3: Witlockx carillon. Tuning deviations from
1/4-comma meantone temperament computed according to
different strike pitch definitions. Up: half the nominal
frequency. Middle: missing fundamental from the nominal,
twelve and upper octave. Bottom: physical prime. Optimal
reference pitch are given in Table 2.

In Figure 3, the tuning deviations obtained by considering
two hypothesis for the determination of the strike pitch are
displayed. The upper plot pertains to computations based on
the octave rule - known to provide a good approximation in
well-tuned bells [2] -, while the lower plot has been obtained
by optimizing the perceived pitch of tthe carillon F0 to the
missing fundamental of the set of bells. If several missing
fundamentals may occur in some very large bells [5], the
missing fundamental considered here is the pitch created by
the near-harmonic series formed by the nominal, twelve and
upper octave, whose frequency ratios, with respect to the

strike pitch, are close to 2:3:4 (see Table 1). To estimate
the missing fundamental, a least-square fit of the identified
frequencies of the three partials is used. Unlike the average
distance between successive partials, this approach provides
a means of accounting for the possible misalignment of the
three partials. The pitch of the missing fundamental of a bell
is thus obtained as:

Fst = {rn}+{ f pn } (5)

where {rn} = {r5, r6, r7}t is a vector containing the bell partial
frequency ratios according to a temperament, and { f pn } =
{ f p5 , f p6 , f p7 }t is a vector of the identified modal frequencies
of the partials nominal, twelve and upper octave respectively.

As displayed in Figure 3 for the 1/4 comma meantone
temperament, the octave rule results, not surprisingly, in
an overall good tuning of the nominals. Indeed, since
only the nominal appears in the definition of the strike
pitch according to this criterion, the optimization process
adjusts the perceived frequency F0 by minimizing the
tuning errors of these bell partials only. Unlikely, for the
partials discarded in the computations, large dispersions are
obtained, especially for the upper octaves which are sharp by
more than a quarter-tone for some notes. This is due to the
less-than-perfect internal frequency relationships achieved
by the founder between nominals and upper octaves (see
Figure 2). For the missing fundamental criterion, one
observes a net improvement of the tuning of upper octaves
over the musical scale. Again, this shows the well-behaviour
of the optimization process which now accounts for three
partials, including the upper octave, for minimizing the
overall detuning of the set of bells. Also displayed in
Figure 3 are the tuning errors relative to F0 stemming from
an optimization based on the physical prime of the bells.
Now, by comparing the results in Figure 3, notice that the
dispersions of the bell partials over the musical scale only
differ by a shift, i.e by the computed reference frequencies.
This is easily explained as the choice of the criterion for
determining the carillon’s pitch does not affect the internal
frequency relationships between the bell partials, which are
governed by the tuning system, i.e the musical temperament.
Consequently, performing different optimizations on the
perceived pitch only change the values of the reference
tuning F0 (see Table 2 for the estimated F0). The variations
observed in the reference pitch can be easily related to the
weight of the partials used in the definition of the strike note.

Because the influence of the physical prime remains
unclear in relation to the qualities of bell sound, we report in
Figure 4 the frequency deviations between: 1) the physical
prime and the perceived reference pitch of the carillon. 2) the
strike note of each bell and the perceived reference pitch of
the carillon, and for each bell, 3) the physical prime and the
strike pitch. Besides the smooth relative tuning observed
between the prime and the reference pitch F0 when one
assumes the strike pitch to be one octave below the nominal,
notice the proximity in frequency between the physical
prime and the perceived strike pitch of the bells for tones
above F1. From the musical point of view, this closeness
may strengthen the perceptual definition of the strike note of
these bells. Also, notice that for the lower tones, the slight
frequency difference between the physical prime and the
perceived strike pitch may contribute to the occurence of
beats in the sound of the bells. Finally, by comparing the
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Figure 4: Witlockx carillon. Relative frequency differences
between physical prime and perceived pitch of the carillon
(red), strike note and perceived pitch of the carillon (blue),
and physical prime and strike pitch (green). Up: half the
nominal frequency. Middle: missing fundamental.

results obtained for the two perceptual criteria, one should
observe that the relation physical prime-to-strike note of a
bell changes according to the hypothesis considered for the
determination of the strike pitch of a bell.

Regarding the tuning of the bells to an intended
temperament, Figures 5 and 6 give the global tuning
deviations of each partial, identified by its own color,
in terms of statistical indicators computed over the low
register of the instrument, for different temperaments.
These plots offer a means of comparing, objectively, several
temperaments to which the carillon would have been tuned
for a given strike pitch criterion. Note, however, that tuning
deviations are plotted with respect to different reference
frequencies since the adjustement of F0 depends on the
assumed temperament. What is readily apparent from
Figures 5 and 6 is that all temperaments produce a similar
tuning deviation pattern once a strike pitch criterion has been
defined. For the octave rule, the partials hum, nominal and
twelve appear accuratly in tuned with the computed F0 while
the upper octave is raised by as much as 60 cents in average
above its expected value for a well-tuned carillon. When
we now turn to consider the missing fundamental criterion,
optimizations result in a more homogeneous dispersion
among the partials but actually any of the partials is perfectly
in tune with the reference pitch. With such a result, one
understands that any lower bell partial would convey the
sensation of pitch of the strike, which would certainly results
in an ambiguous sensation of pitch of the carillon.

Noting that the relative tuning between nominal and
twelve is relatively good (see Figure 3), results for the

difference tone criterion - which are not presented here - are
nearly similar to those obtained for the octave rule. As a
conclusion, it can be said that the presented results confort
the conclusions presented in [4] where no preferential
musical temperament for the Witlockx carillon has been
determined. The main reason is that errors in tuning are
larger than the stringent precision required to tune a carillon
according to a given temperament.
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Figure 5: Witlockx carillon. Octave rule. Mean (up) and
standard deviations (bottom) of the detuning of individual
partials with respect to the perceived pitch of the carillon.
Black dots in the lower plot stand for the mean of the
standard deviations of the partials.
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Figure 6: Witlockx carillon. Missing fundamental. Mean
(up) and standard deviations (bottom) of the detuning of
individual partials with respect to the perceived pitch of the
carillon. Black dots in the lower plot stand for the mean of
the standard deviations of the partials.

6.2 The Levache carillon
Figure 7 pertains to bells cast by N. Levache and shows

the tuning deviations from the computed reference strike
pitch of the set of bells, when one assumes the strike pitch
to be one octave below the nominal. As seen, there is an
important dispersion in the results (note the use of different
scale for the y-axis compared to Figure 3), which means
that bells are neither internally nor externally tuned with
respect to the computed F0. This confirms what could have
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been expected through a close examination of the relative
frequencies of the bells partials displayed in Figure 2.
Finally, Table 2 attests the difficulty to estimate accuratly the
tuning of a carillon when the internal tuning of the collection
of bells is not precise.
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Figure 7: Levache carillon. Tuning deviations from 1/4-
comma meantone temperaments. Octave rule. Optimal
reference pitch computed is 427.6 Hz.

Reference tuning F0 (Hz)

Criterion (a) Criterion (b) Criterion (c) Physical modes

Northern 427.6 411.8 428.7 435.7
Southern 395.5 394.9 403.6 396

Table 2: Reference frequencies of the set of bells from the
Mafra’s carillons computed for different criteria. Tuning is
based on the 1/4-comma meantone temperament.

7 Conclusions
In this paper, we extend our previous analysis of the

tuning properties of the Mafra’s carillons by addressing
the important perceptual strike note of the bells, which is
a subjective tone heard when a bell is struck. From the
modal identifications of the bells vibrational properties, we
compare several approaches for the determination of the
strike note, by focusing on the bells of the low register of
the carillons. If the results of our optimization confirm the
overall tuning qualities of the two carillons, they highlight
that if the choice of a given criterion affect the estimation
of the reference tuning of the carillons, it does not change
however the dispersion in tuning observed along the musical
scale, which is actually govern by the bells internal tuning.
As illustrated for the Witlockx carillon, examining the
tuning of a carillon with respect to the physical bell partials
or a given perceptual criteria results in very small difference
for the reference tuning of the musical instrument.

A popular view since the early 50s [21–23] is that,
although not present in the response spectra, “virtual
fundamentals” are connected with strong periodicities in the
corresponding autocorrelation functions. Recent theories on
pitch account for the amplitudes of partials, beyond their
frequency information. This seems sound from a physical
point of view, and we believe that the much used older

concepts should be revised according to recent views on
pitch from psychoacoustics. Our future work will follow
such lines.
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(France), for calling our attention to important aspects related
to pitch phenomena in carillon bells.

References
[1] W.A. Hibbert, “The quantification of strike pitch and pitch

shifts in church bells”, PhD thesis, The Open University,
(2008).

[2] A. Lehr, “Partial groups in the bell sound”, J. Acoust. Soc.
Am. 79, pp. 2000-2011 (1986).

[3] L. Rayleigh, “On bells”, Phil. Mag., 29, pp. 1-17 (1890).
[4] V. Debut, M. Carvalho and J. Antunes, “An objective

approach for assessing the tuning properties of historical
carillons”. In Proceedings of the Stockholm Musical Acoustics
Conference (SMAC), July 2013, Stockholm, Sweden.

[5] T. D. Rossing, Science of Percussion Instruments, World
Scientific Publishing, Singapore (2007).

[6] X. Boutillon and B. David, “Assessing tuning and damping
of historical carillon bells and their changes through
restoration”, Applied Acoustics, pp. 901-910 (2002).

[7] J.H. Eggen, “The strike note of bells”. Report No.
522, Institute for Perception Research, Eindhoven, The
Netherlands (1986).

[8] A. Lehr, The Designing Of Swinging Bells And Carillon Bells
In The Past And Present, Athanasius Kircher Foundation,
Asten, 1987.

[9] J. Arts, “The sounds of bells: The secondary strike note”, J.
Acoust. Soc. Am. 10, pp. 327-329 (1939).

[10] E. W. van Heuven, “Acoustical measurements on church bells
and carillons”, PhD thesis, Delft, The Netherlands (1949).

[11] A. Lehr, “The System of the Hemony Carillons Tuning”,
Acustica, 3, pp. 101-104 (1951).

[12] E. Meyer and J. Klaes, “On the Strike Note of Bells”,
Naturwissenschaften, 39, pp. 697-701 (1933).

[13] A. J. M. Eggen, “The pitch perception of bell sounds”, Institut
voor Perceptie Onderzoek, Annual Progress Report, 21, pp.
15-23 (1986).

[14] T. Rossing, “Vibrations of bells”, Applied Acoustics, 20, pp.
41-70 (1987).

[15] J. Pfoundner, “On the Strike Note of Bells”, Acustica, 80, pp.
232-237 (1994).

[16] J. F. Schouten and J. t’Hart, “The Strike Note of Bells”, Neth.
Acoust. Soc., 7, pp. 8-19 (1965).

[17] E. Terhardt, G. Stoll and M. Seewan, “Algorithm for
extraction of pitch and pitch salience from complex tonal
signals”, J. Acoust. Soc. Am.71, pp. 679-690 (1982).

[18] J. Juang, Applied System Identification, PTR Prentice-Hall,
Inc, New Jersey (1994).

[19] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.
Flannery,Numerical Recipes 3rd Edition: The Art of Scientific
Computing, Cambridge University Press, New York (2007).

[20] A. Lehr, De twee klokkenspelen op het nationaal paleis te
Mafra, Athanasius Kircher Foundation, Asten (1984).

[21] J. Licklider, “A duplex theory of pitch perception”,
Experientia7, pp. 128-134 (1951).

[22] A. de Cheveigne,“Cancellation model of pitch perception”, J.
Acoust. Soc. Am.103, pp. 1261-1271 (1998).

[23] D. D’Orazio, S. De Cesaris and M. Garai, “A comparison
of methods to compute the effective duration of the
autocorrelation fuinction and an alternative proposal”, J.
Acoust. Soc. Am.4, pp. 1954-1961 (2011).

ISMA 2014, Le Mans, France

589


