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The sound of the electric guitar is based on the conversion of the string vibration into an electrical signal. The string
vibration may be affected by couplings with the body, mostly when there is a frequency coincidence between the
modes of each sub-structure (strings and body). These kinds of coupling are generally analysed in experimental
conditions far from playing conditions. The aim of this paper is therefore to quantify the influence of the guitarist
on the guitar vibratory behaviour. Particular modes of the guitar’s structure are therefore studied for different
classic instrumentalist positions. The modal frequencies and dampings of the instrument are identified using an
operational modal analysis. This method, based on the natural excitation technique using the analysis of inter-
correlation functions of different sensors measuring at the same time the instrument vibration, is adapted to take
into account the string as a particular excitation of the body. Experimentations are therefore performed while
playing. The influence of the left hand holding the guitar neck, of the fingers pressing the string against the
fingerboard, and of the right hand and the stomach touching the body are then quantified in terms of body modal
parameters.

1 Introduction
The sound of the electric guitar is based on the conversion

of the string vibration into an electrical signal. The string
vibration may be affected by couplings with the body, mostly
when there is a frequency coincidence between the modes
of each sub-structure (strings and body) [1]. It was notably
shown that, for the electric guitar, this coupling is mainly
located at the neck. However, in the classic way of playing
of this instrument, the left hand holds the neck and the finger
presses behind the fret the string against the fingerboard [2].
Thus, this left hand may have consequences on the neck
vibrations. Similarly, the instrumentalist stomach and thighs
touch the instrument’s body and may also modify the global
body vibration. This playing situation is not classically
taken into account for most of mechanical or vibratory
studies of musical instruments [3]. Indeed, it is easier to
compare experimental results to theoretical or modelling
ones when the instrument’s boundary conditions are well
understood [4]. However Fleischer and Zwicker performed
vibratory measurements on electric guitars with a player
sitting on a chair with the guitar was resting on his right
thigh. His left hand held the neck near the location where the
conductance was determined. Measurements were done with
a shaker with an impedance head directly fixed on the neck
[5, 6]. Although the instrumentalist’s effect is included in
their conductance measurements, they can not quantify his
damping contribution. In another study, Fleischer compares
two modal analyses of the same electric bass guitar: laid
on a stand, or resting on instrumentalist’s thigh [7]. Due
to the damping by the body and the arms of the player,
the amplitudes of the bass vibrations are principally not as
large as those measured in the guitar stand. In detail, global
modes are the most affected by the instrumentalist. But the
influence of the instrumentalist is not once again quantified
in terms of additional damping. These studies show that
this kind of measurements (shaker fixed on the neck with a
player holding the guitar) can not be set up to analyse a large
set of instruments, or to carry out studies with non-invasive
constraints. Therefore, it could be interesting to quantify
the instrumentalist’s influence on the modes, in order to
complete the results obtained for other boundary conditions.
In order to identify the modal parameters of instruments
in playing condition, an operational modal method can be
used, as recently done on the concert harp [8]. By using the
harmonic excitation of the strings, modal frequencies and
damping may be obtained by using a modified Least Square
Complex method (mLSCE) [9, 10].

The aim of the study is therefore to quantify the player’s

effect on the electric guitar modes. In Section 2, the
operational modal analysis is presented, particularly the
modified LSCE method. Then, the experimental setup is
described with the instrumentalist configurations in section
3 and finally results in terms of modal parameters of the
electric guitar coupled to the instrumentalist are given in
section 4.

2 Operational Modal Analysis
In order to identify modes on the electric guitar in

playing condition, a recent method is used: the operational
modal analysis and in particular the Modified Least Square
Complex Exponential algorithm (mLSCE) [8, 9, 10]. Modal
parameters may be obtained with the vibratory responses of
the instrument only. This is explained in this section.

2.1 Natural Excitation Technique (NExT)
The modified LSCE method (mLSCE) is based on the

NExT technique [11] which makes the assumption that
the inter-correlation functions Ri j(t) between the vibratory
signals i and j for each instant t is similar to the vibratory
response of the structure at i due to an impulse excitation at
j:

Ri j(t) = lim
T→∞

1
T

∫ T/2

−T/2
qi(τ)q j(τ − t)dt

=

N∑
r=1

φriAr j

mrω
d
r

sin
(
ωd

r t + θr

)
e−ξrω

n
r t, (1)

where φri is the ith component of the rth eigenmode, Ar j is a
constant associated to the jth vibratory signal, mr is the rth
modal mass, ωr and ξr are the rth eigen-pulsation and modal
damping respectively, ωd

r is the rth damped pulsation, θr is
the phase associated to the rth component and N the order
of the mathematical model associated to the mechanical
system. Eventually, the inter-correlation functions between
different vibratory signals measured on the structure simply
corresponds to the sum of damped oscillations having
damping coefficients and frequencies equal to the modal
parameters of the structure.

2.2 mLSCE method
Equation (1) clearly shows that modal identification

techniques in the time domain can be applied. Thus, the
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Least Square Complex Exponential method seems to be
particularly well adapted.

The inter-correlation function Ri j can be written in terms
of complex modes Ψri of the structure with the sampling
period ∆t

Ri j(k∆t) =

N∑
r=1

ΨriCr jesrk∆t +

N∑
r=1

Ψ∗riC
∗
r je

srk∆t, (2)

where
sr = −ξωr ± ωr

√
1 − ξ2

r (3)

are the complex poles of the system and Cr j a constant
associated with the rth mode for the jth vibratory signal
chosen as a reference. ∗ denotes the complex conjugate.
Due to the complex form of the poles, the esrk∆t are the roots
of a 2N polynomial equation named Prony’s polynomial
equation:

β0 + β1V1
r + · · · + β2N−1V2N−1

r + V2N
r = 0 (4)

where Vr = esr∆t. The poles are finally obtained by using

sr =
1
∆t

[
|Vr | ± arg(Vr)

]
. (5)

The mLSCE [9] includes the harmonic components of
known pulsation Ω of the string harmonics as being virtual
modes having zero damping whose poles can be written

sΩ
r = ± Ω, (6)

and the Prony’s polynomial equation has two complex
conjugate extra roots

VΩ
r = esΩ

r ∆t. (7)

In the case of L > 2N time instances, m harmonic
components and p sensors, the Prony’s equation can be
written in symbolic form including the harmonic excitations
Ω1 to Ωm as followsA b1 + C b2 = E

B b1 + D b2 = F
, (8)

where A is a (L × 2m) matrix, b1 a (2m × 1) vector, C a
(L × 2N − 2m) matrix, E a (L × 1) vector, B a (2m × 2m)
matrix, D a (2m × 2N − 2m) matrix and F a (2m × 1) vector.
A and B are defined as follows:

A =



R1
0 ... R1

2m−1
...

...
R1

L−1 ... R1
L+2m−2

...
...

Rp
0 ... Rp

2m−1
...

...
Rp

L−1 ... Rp
L+2m−2


B =



0 ... sin (Ω1 (2m − 1) ∆t)
1 ... cos (Ω1 (2m − 1) ∆t)
...

...
0 ... sin (Ωm (2m − 1) ∆t)
1 ... cos (Ωm (2m − 1) ∆t)


,

(9)

and C and D as

C =



R1
2m ... R1

2N−1
...

...
R1

L+2m−1 ... R1
L+2N−2

...
...

Rp
2m ... Rp

2N−1
...

...
Rp

L+2m−1 ... Rp
L+2N−2



D =



sin (Ω12m∆t) ... sin (Ω1 (2N − 1) ∆t)
cos (Ω12m∆t) ... cos (Ω1 (2N − 1) ∆t)

...
...

sin (Ωm2m∆t) ... sin (Ωm (2N − 1) ∆t)
cos (Ωm2m∆t) ... cos (Ωm (2N − 1) ∆t)


.(10)

The vectors b1, b2, E and F are defined as follows

b1 =


β0
...

β2m−1

 , b2 =


β2m
...

β2N−1

 , E =


R2N
...

RL+2N−1

 ,

F =



sin (Ω12N∆t)
cos (Ω12N∆t)

...
sin (Ωm2N∆t)
cos (Ωm2N∆t)


(11)

b1 can be computed with the first line of equation (8) using
b2, and b2 is finally obtained from the second line of equation
(8) as a least-square solution.

2.3 Stabilisation diagram
As shown in equation (8), the modal identification

is clearly dependent on the order N of the mathematical
model. Thus, the stabilisation diagram is generally used
to select physical poles of the model. In this diagram, the
evolution of the order allows to identify stable poles, through
convergence criteria in frequency and in damping. These
poles are then selected and defined as results of the modal
identification. In this paper, stable poles have variations
smaller than 1% in frequency and smaller than 20% in
damping.

3 Experimental setup
In order to investigate the influence of the instrumentalist

on the electric guitar vibratory behaviour, the modal analysis
of the instrument is performed when the instrument is played
by using the method previously explained. Two classic
playing configurations are studied in this experiment: when
the instrumentalist is sitting or when he is standing, as shown
in figure 1.

Previous studies [1, 4] showed that the main element
affecting the string vibration of an electric guitar is the
neck. In consequence, we chose to investigate its modal
behaviour. Thus, nine accelerometers are glued on the neck:
eight are fixed, four on each side, and one is roving on
the symmetrical axis close to the played fret as shown in
Figure 1. This latter accelerometer provides the reference
signal (see section 2.2).
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(A) (B)

Figure 1: Experimental configurations: A sitting musician;
B standing musician

In order to compare results in playing situation to those
in free boundary conditions, a classic modal analysis is
also performed where the electric guitar is laid on elastic
straps supported by a frame. For the modal identification,
the Least Square Complex Frequency (LCSF) algorithm,
implemented in the Modan Software [12] developed at the
Femto-st Institut, is used.

The instrumentalist is asked to play several notes along
the D3-string (fundamental frequency for the open string
146,82 Hz). The left-hand middle finger presses the string
against the fingerboard successively at the nut (denoted F0),
the frets 2 (E3), 4 (F#3), 6 (G#3), 10 (C4), 14 (E4) and
16 (F#4, fundamental frequency 369,9 Hz). Other strings
are blocked with the other fingers of the left-hand (this is a
common practice for guitar players).

4 Results
Table 1 gathers the modal parameters of the first three

bending modes of the electric guitar obtained by the classical
modal analysis. Results are found to be very close to those
already obtained for a similar guitar [1]. In order to have a
good overview of the mode shapes, it was chosen to show
those computed with a finite-element model [13]. The
location of each pressed fret can be shown for each mode
(see table 1).

In figure 2 the modal parameters are shown for the three
first modes, identified by the operational modal analysis, for
the two playing configurations (sitting or standing) and for
the seven notes. The first mode is a global bending motion
like a free-free beam. The second and the third modes
correspond to a classic quasi-clamped-free beam: the mode
shape is localised on the neck.

In figure 2, the relative deviation between modal
frequencies with or without instrumentalist is found to be
between 1% (mode 3) to 7% (mode 1). This deviation
is in the same order of magnitude of the inherent error
of the identification method, as already found in [8].
Modal frequencies obtained in playing situation are not
consistently found below or above the modal frequencies
in free boundary conditions. These results suggest that this
deviation is more due to the identification algorithm than to
the instrumentalist.

On the contrary, the modal damping evolution with the
note played (pressed fret) seems to exhibit a systematic

Table 1: Electric guitar’s modes. Modal frequencies and
dampings are obtained by the classic modal analysis. Mode
shapes come from a finite-element model [13]. Fi denotes

the approximative location of each fret i

N◦ Mode shapes
Modal
freq.
[Hz]

Modal
damp.
[%]

1
F0F2F4F6

F10

F14
F16

56.3 1.3

2 F0
F2

F4
F6

F10

F14
F16

169.1 2

3 F0

F2

F4
F6F10

F14
F16

370.8 1.5

behaviour, see figure 2. Indeed, this evolution is found to
be directly linked to the modal shape shown in table 1:
the wider the mode shape displacement is, the higher the
damping is. This can be explained by the fact that the
instrumentalist left hand behaves as a localised dashpot. The
modal damping is all the more affected so this dashpot is
localised close to the anti-node of the mode shape. When
the instrumentalist left hand is close to a node of the mode
shape, the modal damping is little affected as shown for
mode 2, frets 10 to 16, or for mode 3, between fret 2 and 4.
Neck modal dampings are modified by the finger and hand
pressing the fingerboard, only if the modal displacement is
large enough at the fretting point. This is particularly true
for the modes 2 and 3 where only the neck vibrates. For the
mode 1, the body has a significant displacement. Therefore,
for this mode, the stomach touching the body also acts as
a dashpot. That is why, for mode 1, the modal damping in
playing configuration is found to be always above the modal
damping without instrumentalist (classic modal analysis) at
about 5% for F0 (close to the mode node). Note that for a
sitting configuration, the thigh also touches the guitar’s body
(see Figure 1-B) and then increases the damping for this
mode.

5 Conclusion
In this paper, a novel technique for modal identification

in playing configuration is successfully used. Modes of
the electric guitar in different configurations are studied. It
is shown that for the first three bending modes, structural
damping is found to be increased by up to 15% for
fretting cases at anti-nodes. Instrumentalist’s stomach
and thigh increase the modal damping by 5% for the first
bending mode. Note that no significant modal frequency
modifications are found with our experiment.

These results are particularly interesting for the
interpretation of the conductance curves of electric guitar
in free boundary conditions. Future works will include the
investigation of other modes, and the modelling of the body
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Figure 2: For each configuration, the modal parameters are identified for different played notes: at frets 2, 4, 6, 10, 14, 16 and at
the nut. The dashed lines correspond to the modal parameters obtained in free boundary configuration by the classical modal

analysis. Three bending modes are shown: A-Mode 1, B-Mode 2, C-Mode 3

(fingers, hand, stomach and thigh) of the guitar player.
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lutherie?”. In proceedings of the Congrès Français
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