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Performance of a valved brass instrument, as for all musical instruments, is inherently time varying. In addition to
lip dynamics the player also has control over the length of the air column through the use of valves; to date, this
time-varying feature of the instrument has seen relatively little work at either the experimental or theoretical level.
Three situations can be considered when investigating valve effects on a brass instrument: static, fully depressed;
static, partially depressed; and a time-varying transition between valve configurations. In a static setting, fully
depressing a valve increases the total tube length, thus lowering the resonance frequencies of the instrument.
In static, partially depressed configuration, the effect on the input impedance is nontrivial due to the existence
of multiple paths and constrictions that increase the boundary layer effects. Finally, during transitions between
configurations, transient effects on the wave propagation cannot be ignored.
This paper presents a finite-difference time-domain (FDTD) model of a brass instrument with a single working
valve. FDTD methods allow for the flexible simulation of time varying systems and are therefore well suited to the
synthesis of brass instrument sounds, as well as experimental validation. Experimental impedance measurements
of a simplified brass instrument are made for the instrument under static conditions. These measurements are then
compared to the simulation results to verify the model. Future work is then considered for the time varying valve
configurations and how these could be investigated in the laboratory.

1 Introduction
The effect of a brass instrument valve can be considered

as a diversion of the airflow through different paths in the
instrument. In general, there are two possible paths: the
default, where the air flows straight through the valve; and
the bypass, where the valve diverts the air into a longer
piece of tubing which then rejoins the bore at the exit of the
default tube. In the latter case, the airflow passes through the
valve twice.
Finite-Difference Time-Domain (FDTD) methods are well
suited to the simulation of time-varying systems and have
been shown to be well suited to the simulation of musical
instruments[1]. Although more computationally expensive
than other time-domain methods, such as digital waveguides,
they do allow for accurate simulation of system dynamics
and allow for flexible user control in musical applications.
The model used is presented in Section 2 followed by the
finite-different schemes in Section 3. Valve junctions are
discussed in Section 4. Preliminary experiments performed
on a simplified valved instrument are described in Section
5 and then the experimental and simulation results are
presented in Section 6. Further work is discussed alongside
the concluding remarks in Section 7.

2 Tube Model
For static wall conditions and oscillatory flow, the air

pressure, p, and velocity, v, in an acoustic tube can be
described in one dimension using acoustic impedance, Z,
and admittance, Y , so that[2]

∂x p̂ = −Zv̂ (1)
∂xS v̂ = −YS p̂ (2)

where ∂x corresponds to the first derivative along the axial
length of the tube, S corresponds to the cross-sectional area
of the air column and the ˆ operator is used to distinguish the
frequency domain pressure and velocity functions, p̂ and v̂,
from the time domain pressure and velocity functions. The
impedance and admittance include losses associated with
viscothermal boundary layers and are defined as

Z =
jωR0

c (1 − F (rv))
, Y =

jω (1 + (γ − 1) F (rt))
cR0

(3)
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2

, rt = Prrv (5)

represent the ratio of the air column radius to the viscous and
thermal boundary layers respectively. Other symbols denote
thermodynamic constants and are defined in the Table 1.
Benade[2], Caussé et al[3] and Keefe[4] have all derived
approximations to the impedance and admittance for
different limits of rv and rt. Keefe gave approximations
for cases where rv > 1, the large r approximation, and
rv < 1, the small r approximation, that allowed for a smooth
transition region around unity. By defining Z = jωL + R and
Y = jωC + G , the large r approximation is given by
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and the small r approximation1 is given by

R =
8η
πa4 (10)

ωL =
4ρω
3πa2 (11)

G =
πa4ω2

8ρc2 (γ − 1)ρ
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(12)

ωC =
πa2ωγ

ρc2 (13)

1note that in the original paper[4] there appears to be a typographical
error in the definition of G and ωL which has been corrected here
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Using these approximations, the characteristic
impedance of a cylindrical tube can be calculated as

Zc = (Z/Y)0.5 (14)

Constant Value
Air Density, ρ[kgm−3] 1.1769 (1 − 0.00335∆T )
Speed of Sound, c[ms−1] 347.23 (1 + 0.00166∆T )
Viscosity, η[kgs−1m−1]

(
1.846 × 10−5

)
(1 + 0.0025∆T )

Prandtl Number, Pr 0.841 (1 − 0.0002∆T )
Ratio of Specific heats, γ 1.41017 (1 − 0.00002∆T )

Table 1: List of thermodynamic constants as reproduced
from Benade[2] and reprinted by Keefe[4], where ∆T is the

temperature variation from 26.85◦C

Considering paths that lie entirely within either the default
or bypass tube, the surface area of the acoustic wave has
a larger diameter than the boundary layers associated
with viscothermal losses within the frequency range of
interest in brass instrument playing. This means that the
large r approximation derived by Keefe[4] can be used to
simulate these losses, as has been done in previous work
on instrument simulation[5]. In partially opened valve
configurations, the large r approximation is not always
correct as one can imagine a situation where the valve has
a very small opening into either the default or bypass tube.
In this case the small r approximation must be used. To the
authors’ knowledge no previous work on trumpet valves
has considered this change in behaviour for small valve
constrictions.

3 Finite-Difference Time-Domain
Formulation

A discrete time-domain formulation of the system
can be obtained from the frequency domain through the
transformation ( jω)m → ∂tm in Eqs. (1) and (2) when Z
and Y are evaluated using Eqs. (6) to (9) for the large
r approximation and Eqs. (10) to (13) for the small r
approximation.
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Figure 1: Percentage difference of the characteristic
impedance, Zc, using the small r approximation using G

defined in Eq. (12) (blue) and G = 0 (green) from the exact
solution. Top is real part, bottom is imaginary part

For preliminary investigation G in Eq. (12) is assumed, for
convenience, to be zero to allow the order of the differential
equations be the same for small and large r approximations.
Figure 1 shows the percentage difference of the characteristic

impedance, Eq. (14), using the small r approximation with G
set by Eq.(12) and set to zero from the exact solution. Both
settings yield a difference of less than 6% over the accepted
range of the approximation. The small r approximation
becomes

∂x p = −

(
4ρ
3S

∂tv +
8ηπ
S 2 v

)
(15)

∂xS v = −
S γ
ρc2 ∂t p (16)

Note that Eqs. (15) and (16) do not reduce to Webster’s
equation.

Figure 2: Discretisation of pressure and velocity fields.
Open circles are pressure nodes and filled circles are

velocity nodes. Solid lines define integer time/space points
and dashed lines define half-integer space/time points. l

denotes spatial index spaced a distance ∆x apart. n denotes
time index spaced a time ∆t apart.

To construct a finite-difference scheme for these equations,
first the pressure and velocity fields are discretised and
interleaved so that the pressure field values lie on integer
space/time grid points and the velocity field lies on the
half-integer grid points as shown in Figure 2. The partial
derivative operators are then replaced with either forward or
backwards finite difference operators depending on which
is required for centring of the equations[5, 6]. For arbitrary
variable i, the forwards and backwards difference operators
are defined

∂i → δi+ =
ei+ − 1

∆i
, ∂i → δi− =

1 − ei−

∆i
(17)

where ei+ and ei− define shifting operators that translate a
function either one step forwards or backwards respectively.
∆i refers to the grid spacing for that variable. Similarly
forwards and backwards averaging operators can be defined
as

µi+ =
ei+ − 1

2
, µi− =

1 − ei−

2
(18)

for necessary centring requirements (for more information on
FDTD operators see [1]).
The finite-difference scheme for the small r approximation is

δx+ pn
l = −

 4ρ
3S l+1/2

δt−vn+1/2
l+1/2 +

8ηπ
S 2

l+1/2

µt−vn+1/2
l+1/2

 (19)

δx−

(
S l+1/2vn+1/2

l+1/2

)
= −

S̄ lγ

ρc2 δt+ pn
l (20)

The large r approximation can be simplified to a lower order;
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with Z truncated toO
(
r−2

v

)
and Y truncated toO

(
r−1

t

)
to create

positive, real functions[5]
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+

3
r2

v

)
(21)

Y =
ω

ρc2

(
j +

2 (γ − 1) j1/2

rt

)
(22)

This leads to the finite-difference scheme

δx+ pn
l = −

(
ρδt−vn+1/2

l+1/2 + fl+1/2µt−vn+1/2
l+1/2 (23)

+gl+1/2δt1/2µt−vn+1/2
l+1/2
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)
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(
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ρc2 δt+ pn
l + qlδt1/2µt+ pn

l

)
(24)

where subscript l is the spatial index and superscript n refers
to time index. S̄ l is defined as S̄ l = µx−S l+1/2 and

fl+1/2 =
3ηπ

S l+1/2
, gl+1/2 = 2

√
ρηπ

S l+1/2
(25)

ql =
2(γ − 1)

Prc2

√
ηπS̄ l

ρ3

For numerical stability, the spacing of the grid is set by the
Courant Friedrichs Lewy[7] condition

c∆t
∆x
≤ 1 (26)

where ∆t is the time step (inverse sample rate) and ∆x is the
length step. The fractional derivatives in Eqs. (23) and (24)
are approximated in the same way as Bilbao and Chick[5].
This involves taking a Taylor expansion of the numerator
and denominator of the Tustin transformation[8, 9] and
then generating a continued fraction expansion using the
method described by Sakurai et al[10]. The continued
fraction expansion is then truncated and rearranged to create
a polynomial fraction of order M which is normalised so
that the zeroth order denominator coefficient is unity.

δt1/2 →

√
2
∆t

(1 − et−)0.5 (1 + et−)−0.5 → A−1B (27)

B =

M∑
r=0

brer
t−, A =

M∑
r=0

arer
t−, a0 = 1 (28)

4 Valve Junctions
Consider the valve schematic in Figure 3.

Figure 3: Valve schematic. Input tube feeds into the default
and bypass sections

At the valve junction it is assumed that the pressure is the

same at the boundary of all tubes and the volume velocities
sum to zeros[6].

pn
J = pn

in = pn
d = pn

by (29)

µx+

(
S invn+1/2

inNin−1/2.

)
= µx−

(
S dvn+1/2

d1/2

)
+ µx−

(
S byvn+1/2

by1/2

)
(30)

Where subscripts in, d and by refer to the input, default
and bypass tubes and J refers to the junction point. At the
junction the area of the default and bypass tubes are ratios
qd and qby of the input tube

S d = qdS in, S by = qbyS in (31)

qd + qby ≤ 1 (32)

where Eq.(32) can be less than unity because the geometry
of the tubing means that the input tube does not completely
overlap the default and bypass tubes. The pressure update
at the junction can be calculated using either Eq.(24) or (20)
depending on the individual tube radii and using the identity

δi− =
2
∆i

(µi− − ei−) =
2
∆i

(1 − µi−) (33)

For an input tube that branches into the default and bypass
tubes at the valve, the pressure at the junction is defined by

2
(
S vn+1/2

inNin−1/2
− S vn+1/2

d1/2
− S vn+1/2

by1/2

)
=

[
αδt+ + βA−1Bµt+

]
pn

J

(34)
For all tubes large enough that the large r approximation
holds

α =
(
∆xin + ∆xdqd + ∆xbyqby

) S̄ J

ρc2 (35)

β =
(
∆xin + ∆xd

√
qd + ∆xby

√
qby

) 2(γ − 1)
Prc2

√
ηπS̄ J

ρ3 Pr

(36)
When the default and bypass tubes are defined using the
small r approximation but the input uses the large r

α =
(
∆xin + γ∆xdqd + γ∆xbyqby

) S̄ J

ρc2 (37)

β = ∆xin
2(γ − 1)

Prc2

√
ηπS̄ J

ρ3 (38)

The definitions for α and β can be appropriately mixed if one
of the default or bypass tubes uses the large r approximation
and the other uses the smaller. Note that individual length
spacings of each tube must be used due to effects related to
discretising each tube section.

5 Experimental Procedure
To explore the effects of a valved transition, a simplified

brass instrument was constructed consisting of a single
(Perinet) valve from a standard B[ orchestral trumpet,
coupled to lengths of cylindrical tubing of nominally similar
diameter to that used in the valve section of the trumpet
(11.6mm). A schematic of the experimental setup is shown
in Figure 4. With the valve open the default tube length was
2492mm, and with the valve depressed, this was extended
by 217mm (the length of the third valve tubing on a Bb
trumpet using the first valve slide to remove effects related
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impedance

measuring head

cylindrical

tubing
trumpet

valve

Figure 4: Schematic of the experimental setup used to
measure the input impedance at different stages of a valve

transition.

Figure 5: Schematic of bypass section used in simulations.
The valve sections are assumed to be constrictions of the air

flow therefore only two junctions are considered.

to the water key).
The acoustic impedance of the test instrument was measured
using the BIAS capillary-based impedance measurement
system [11, 12]. Measurements were taken with the valve
fully ‘open’. The valve was then progressively depressed in
2mm increments using machined spacers to positively locate
the valve at different stages of the transition from ‘open’
to ‘closed’. An impedance measurement was taken at each
increment until the valve was fully depressed.

6 Simulation and Experimental
Results

Impedance measurements of the experiment and those
calculated using the finite-difference schemes presented in
this paper are shown in Figure 6. Simulations were run at
a sample rate of 44.1kHz for 1s and at a temperature of
23◦C. The order of the large r viscothermal filter was 20.
The values of qd and qby were calculated using the ratios
of overlapping circles. The small r approximation was
applied when the air column radius was less than 1mm.
The radiation model of an unflanged circular pipe presented
by Bilbao and Chick[5] was used as the output boundary
condition and an impulse was used as the volume velocity, u,
where u = µx−

(
S 1/2vn+1/2

1/2

)
= 1 for t = 0 and 0 otherwise, for

the calculation of the pressure at the input using a lossless
finite-difference scheme in Eq.(39)

S̄ 0

ρc2 δt+ pn
0 = −

2
∆x

(
S 1/2vn+1/2

1/2 − un+1/2
)

(39)

For the bypass path, the valve sections were considered to
be a constriction in the bypass tube and therefore junctions
were only only considered where the tube connected to the
input and output sections of tubing as shown in Figure 5.
In the valve sections of the air column it is assumed that the
cross sectional area is the same as the opening of that valve
section and that the air column does not expand to the full
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Figure 6: Measured (green) and simulated (blue)
impedances for different valve openings. Top to bottom

corresponds to gradually opening the valve. qd = 0.003 and
qby = 0.0271 are instances when the small r approximation

for viscothermal losses is used.
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tube area until it reaches the longer length of tubing.
The experimental results show that when the valve is in
a partially open configuration new peaks begin to emerge
in the impedance measurements. The simulation results
match experiment well for the fully closed and open
valve configurations and follow behaviour for partial valve
configurations, although less well matched for the case when
the valve ratios are qd = 0.003 and qby = 0.0271. This could
be down to experimental error in determining the opening of
the valve section or the change in shape of the air column
at the valve junction. Another source of difference between
the simulation and experiment could be due to limitations in
the small r scheme chosen and could be improved through
the use of non zero G in equation 12. For qd = 0.1048 and
qd = 0.2678, cases when the large r approximation is used
in all tubes, the simulated impedances match well with those
found in experiment especially at low frequencies. At higher
frequencies there are some peaks predicted in the simulation
that are not found in the experimental results; this could
also be due to errors in calculating the opening of the valve
junctions. Another source of error in the simulation could
come from neglecting any effect of tight bends in the bypass
path.

7 Conclusions and Further Work
This work intended to increase the literature on the

study of brass instrument valves in partial configurations.
The simplified instrument is a good starting point for
this investigation, opposed to using real instruments,
as it removes effects related to the complex geometries
of instrument bores. The propagation and radiation of
sound from open cylindrical pipes is also well understood
which allows for focus on what happens at the valve
boundaries. The FDTD scheme for the large r viscothermal
approximation has already been shown to be appropriate for
simulation of wave propagation in brass instruments[5, 6]
and has proved to be successful for branching tubes in this
example. The scheme for the small r approximation still
requires further experimental and theoretical investigation.
One area that requires further investigation is how the air
column changes shape when it reaches the valve junction.
In this work it is assumed that the air column remains at
constant area when it travels through the valve but this may
not be the case. If the air column rapidly expands it could
introduce turbulence into the system which may not be
fully modelled in one dimension. Further experiments using
custom made valves would allow for more control over the
geometry of the default and bypass paths the airflow can
travel through and would also remove the possibility of air
leaks around the junction. These valves could potentially
be made using 3-D printing technology which allows for
flexible design and is becoming a more commercially viable
method of construction. Custom built valves would allow
for investigations into time-varying valve configurations as
it would allow for positioning of microphones inside the
valve. A full theoretical investigation into time varying
valve configurations is also worth investigating as energy
and stability analysis of FDTD scheme changes when tube
walls vary with time.
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