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This work takes part of the ”cagima” project (supported by the ANR) which investigates the defects of
the tuning of reed musical instruments as well as their homogeneity of emission and timbre. The goal
consists in replacing the traditional approach adopted by instrument makers by a global and rational
approach in the design of new instruments /ab initio/ (called ”logical instruments”), minimizing some
identified defects. In this context, an interactive virtual model, predictive and configurable is proposed.
Several approaches are available in the literature but the main difficulty is to design digital instruments
that are accurate (according to measurements) and that can be implemented in real-time. In this
paper, an approach based on the Extended Discrete Singular Convolution method (EDSC) is proposed.
The temporal operator (including the fractional derivative term for viscothermal losses) is implemented
according to the EDSC formalism. The method allows a fast, straightforward and accurate computation
of the transfer functions of an axisymmetric duct with an arbitrary profile. The computation of the
case where the losses are dependent from the diameter causes no noticeable difficulty. The results are
compared to measurements of a trombone bell.

1 Introduction

This work takes part of the ”Cagima” project
(supported by the French national research agency
ANR) which investigates the defects of the tuning of
reed musical instruments as well as their homogeneity
of emission and timbre. The goal consists in replacing
the traditional approach adopted by instrument makers
by a global and rational approach in the design of new
instruments ab initio (called ”logical instruments”),
minimizing some identified defects. In this context, an
interactive virtual model, predictive and configurable
has to be developed. Several approaches are available
in the literature but the main difficulty is to design
digital instruments that are accurate (according to
measurements) and that can be implemented in
real-time.

The present paper investigates how the Extended
Discrete Singular Convolution (EDSC) method [1]
can be used for the acoustical simulation of the bore
of wind instruments. This method is an extension
of the original DSC method proposed by Wei et al.
[2], which has proved its efficiency and accuracy for
solving differential equations. Technically, this method
is based on a ”well-suited” family of time-continuous
interpolation kernels (delta sequence kernels), which
provide the continuous signal from its sampled version.
Here, this is used to simulate a 1D model of acoustic
propagation in axisymmetric lossy pipes, established
in [3] and validated in [4] for straight, conical and flared
pipes: the Webster-Lokshin model with curvilinear
abscissa (named WL model in the sequel). In this
context, the main interest of EDSC (besides accuracy
and parsimony) is that the fractional derivative of
a signal (operator involved in the model) is derived
from the interpolation formula by using the fractional
derivative of the kernel, that makes the computation
easy. With this method, simulations are performed
in the time domain, from which the acoustic transfer
functions are deduced in the spectral domain.

This paper is organized as follow: in section 2, the
principles of the EDSC method are presented. The
section 3 is devoted to the application of this method to
the Webster-Lokshin equation. In section 4, a method
is given for obtaining numerically the transfer functions
from the EDSC simulations. Section 5 is dedicated to
the validation of the results with some known analytical
results and with measurements of a trombone bell,

followed by the conclusions, Section 6.

2 Kernel methods and EDSC

Ideal bandlimited signals y ∈ L2(R) (finite energy)
with a frequency range included in [−1/2, 1/2] are
known to be such that

y(t) =
∑
m∈Z

y(m) sinc (π(t−m)) , (1)

where sinc(x) = sin(x)/x is the Shannon-Whittaker
interpolation kernel [5, 6]. The sampling period is
therefore Δt = 1. This kernel is non causal and with
infinite support.
The DSC method has been built in a practical way,
so that: (i) an interpolation formula similar to (1) is
fulfilled; (ii) the band-limited property is numerically
satisfied up to a fixed precision (typically, that of
floats); (iii) the kernel magnitude is larger than
the fixed precision, on a bounded centered support
(−M ≤ t ≤ M). Such approximations can be recasted
in the general framework of Reproducing Kernel Hilbert
Spaces [7, cf. p.433] [8], which is not investigated here.
The generic formula for the continuous interpolation
ỹ(t) of a bandlimited function y(t), its derivatives of
order d > 0 and its antiderivatives (d < 0) is

ỹ(d)(t) =
M∑

m=−M

y(m) · k(d) (t−m) . (2)

Different functions can implement the kernel k(t). If
k(t) = sinc(πx), d = 0 and M → ∞, Eq (1) is retrieved.
The kernel has to satisfy (at least up to a fixed precision)

lim
α→∞αk(αt) = δ(t) (3)

where δ(t) is the Dirac delta distribution. In [2], many
kernels are proposed. Among them, an interesting
family of symmetrical kernels, efficiently focusing
the energy close to t = 0, allowing a control of the
bandlimited approximation, is defined by the following
Regularized Shannon Kernels (labeled RSK in the
sequel), for σ > 0,

RSK(x) = Sinc(x) Exp(− x2

2σ2
) (4)

Note that with k(t) = RSK(πt), ỹ and y coincide at
each sample t = m and that, tuning σ and M , their
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difference can be made as small as wanted. For a relative
level of numerical precision η, the length of the effective
numerical kernel support is defined as follows: if |t| > �k
then k(t) < η. Typical value for double precision1 reals,
η � 10−15, gives rise to σ = 3π and �k � 23.

Because a general expression for k(d) is difficult to
find with the RSK kernel, we propose to use another
kernel [1]

RSKN (x) =
1

2N

N− 1
2∑

n=−N+ 1
2

Exp

(
inx

N
− x2

2σ2

)
=

RSK(x)

sinc (x/(2N))

(5)

with i =
√−1. Notice that RSK∞(x) = RSK(x) and, if

k(t) = RSKN (πt), d = 0 and M,N, σ → ∞, Eq (1) is
also retrieved.

This series (5) is rapidly convergent. Moreover it can
be shown that a value as small as N = 15 builds a kernel
which has a numerical accuracy in Eq (2) comparable
to that of the RSK kernel (with σ = 3π). In the sequel,
the kernel k(t) = RSKN (πt) with parameters σ = 3π
and N = 15 is used, and simply denoted k for sake of
conciseness. All numerical examples are computed with
this kernel. A general expression for k(d) is given in
Appendix A (see also figure 1). For the discrete times

�6 �4 �2 2 4 6

�2

�1

1

2

Figure 1: Kernel k(t) = RSKN (πt) and its derivatives
of order d = 1

2 , 1 and 3
2 , according to Eq(13) (from dark

to light).

t = m, the interpolation formula (2) can be written

in vector form as a convolution, ỹ(d) = k(d) ∗ y, with

k
(d)
j = k(t)(d)|t=j and j = −2M to 2M by step 1. The

vector y has to be padded with M zeros on the left
and M zeros on the right, in order to meet the size of
the vector k(d). Efficient numerical techniques based
on the Fast Fourier Transform can be used to compute
this convolution. Doing so, the computing time has
approximately linear dependence to M (and not to M2,
as it could be suggested by Eq (2)).

The range [−M . . .M ] is called ”computing
domain”. The formula has an optimal accuracy in the
”optimal domain” [−M + �k . . .M − �k], whereas in the
”truncation domain” [−M . . .−M + �k, M − �k . . .M ],
it may have a poor accuracy, except if y(m) displays
small values in this range. This is the main drawback
of the method. In the EDSC method, fictitious
points are generally implemented in this range [1],
in order to perform the most relevant part of the
computation in the optimal domain, for instance as

1Notice that with k(t) = sinc(πt), a numerical computation up
to that precision would be difficult because �k = 1015.
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Figure 2: Numerical computation of the derivatives
d = 1, 2, 3, 4 of a cosine function with Eq (2): Relative
error

∣∣y(d)(t)− ỹ(d)(t)
∣∣, with y(t) = cos(t) and M =

50, comparatively to the exact analytical derivatives
y(d)(t) = cos(t+ dπ/2). From dark to light: derivatives
1 to 4. Length of the effective numerical kernel support:
�k � 23. The plateau of the ”optimal domain” appears
clearly.

a polynomial continuation of y(t), which fulfills some
boundary conditions, or with the requirement that y(t)
is symmetrical or antisymmetrical at the boundaries
of the physical problem (located generally at −M + �k
and at M − �k). These different domains appear
clearly in Fig. 2 where the cosine function is chosen
as an example (however with Δt = 1/4, in order to
be representative of the accuracy of Eq (2) in the low
frequency range).

3 Application to the WL equation

3.1 The Webster-Lokshin equation

The Webster-Lokshin equation (hereafter abreviated
WL equation) [4, 9] describes the behavior of the
acoustic pressure waves p(x, t) in an 1D axisymmetric
duct(

∂2
x +

2r′(x)
r(x)

∂x

)
p(t, x) =

1

c2

(
∂2
t + 2ε(x)∂

3/2
t

)
p(t, x)

(6)
and the flow u(x, t), dual quantity to the pressure, is
described by the Euler equation

− ρ

A(x)
∂tu(t, x) = ∂xp(t, x) (7)

with parameters r(x) : radius of the duct, A(x) =
πr2(x) : area of the cross section, ρ: density of air,
ε(x) = κ0

√
1− r′(x)2/r(x) : coefficient of viscothermal

losses, and κ0 � 3.5 × 10−4 m1/2. The curvilinear
abscissa is denoted x in this paper. In order to simplify
the discussion, the speed of sound is considered to be
c = 1.

The analytical solution of this equation for constant

ε(x) and constant r′′(x)
r(x) is described in [9] and

the transfer functions for an arbitrary profile are
approximated by concatenation of pieces of pipe with
constant curvature and C1 regularity.

In the present paper we investigate purely numerical
solutions of the WL equation for an arbitrary
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bandlimited function describing the radius of the
duct r(x). A numerical solution can be approximated
with the EDSC method. This solution is accurate up
to approximately half the Nyquist rate of the temporal
mesh.

3.2 Numerical solution with EDSC

We propose an explicit scheme, mixing the ability
of the EDSC method for approximating the temporal
derivative (including the fractional derivative) and
the classical finite differences scheme for the spatial
derivative. In order to avoid the problems of accuracy
in the ”truncated domain” (see Fig. 2), the computing
domain must be broad enough to ensure that the
acoustic waves have always negligible values in the
”truncation domain”. A consequence of this choice
is that the initial conditions can be specified only for
the spatial variable x. This correspond to the physical
situation where the pressure and the flow signals are
known at a particular coordinate x0 (or equivalently:
where the pressure signals are known at the particular
coordinates x0 and x0 − h, h being a small distance,
because flow and pressure are bounded by Eq (7)).

If the signals p(t, x = x0) and p(t, x = x0 − h) are
bandlimited, Eq (2) permits to approximate the right
member of the WL equation (6), at the coordinates
x = x0 and x = x0 − h for all times t (in particular
for the discrete times m from −M to M). Let us write
these signals in discrete form as a vectors: pj = {p(t =
m,x = j)}, for all discrete steps m defined above. For
any coordinate x, the left member of Eq (6) can be
approximated with a classical finite differences centered
scheme. This gives rise to the discretization of the WL
equation

px−h − 2px + px+h

h2
+

rp(x)
(
px+h − px−h

)
h

(8)

� 1

c2

(
k(2) ∗ px + 2ε(x)k(3/2) ∗ px

)

and leads to the explicit scheme for the propagation of
the signal in forward direction

px+h � (h rp(x)− 1)px−h + 2px + h2 kx ∗ px

h rp(x) + 1
(9)

with rp(x) = 2r′(x)
r(x) and kx = 1

c2

(
k(2) + 2ε(x)k(3/2)

)
.

The spatial progression of the waves in the (infinite)
duct can be computed for any arbitrary, bandlimited
initial condition (px0

, px0−h), by applying the
scheme (9) for each spatial step, starting from x0

and progressing in forward or in backward direction.
Since the classical finite differences scheme is much less
precise than the EDSC scheme, the spatial step h must
be notably smaller than Δt (approximately h = Δt/10
to Δt/20), in order to ensure the numerical stability of
the scheme2.

2The EDSC scheme has a remarkable, numerical stability,
because the RSK kernel damps the high frequency components.

3.3 Practical considerations

In our simulations, the arbitrary initial conditions
are defined as a ”RSK-impulses”:

p(t, x = 0) = RSK(πt/γ)

p(t, x = h) = RSK(π(t− h)/γ)

or

p(t, x = L) = RSK(π(L− t)/γ)

p(t, x = L− h) = RSK(π(L− h− t)/γ)

with γ = 1.5. This choice is motivated by the following
considerations: the duration of the RSK-impulse is
optimally short (only 70 points are numerically non
zero) and it contains all frequencies up to 2/3 of
frequency bound of the kernel. The impulse is not
centered on zero, because kx is strongly asymmetrical.
On the contrary, the impulse is placed to the leftmost
position ensuring that no noticeable numerical reflection
occurs on the left boundary. With this placement,
the ”viscothermal relaxation” due to the ”memory” of
fractional derivative can be optimally developed.

Despite of this manoeuvre, some numerical reflection
occurs on the right boundary, because the ”memory”
of the 3/2 derivative is very long. This happens even if
a temporal mesh of many thousands of points is used,
although this makes little sense and wastes computer
power only to simulate a sum of decreasing exponentials.
The following procedure is more efficient and falsifies
the results in a very marginal manner (only on the
very low frequency range, where the WL equation has
no validity anyway): compute the wave propagation
with a quite small value of M (800 or less), cut away
the pollution due to the numerical reflection on the
right boundary, fit a recursive linear filter according to
the ”clean” portion of the relaxation ”tail” (where the
computed signal looks like a decreasing exponential)
and extrapolate the decreasing exponential until very
small values are reached. In our simulations we used
the following recursive linear filter:

p(m) = a1p(m−n1)+a2p(m−n2)+a3p(m−n3)+a4p(m−n4)
(10)

For the trombone bell simulation (see hereafter), the
numerical values are: M = 800, n1 = 1, n2 = 2, n3 =
645, n4 = 1291. The simulation of the wave propagation
was conducted on 20 spatial unities (by steps h = 1/20).
The RSK-impulse used as initial condition (at x = 0 or
at x = L) was centered 81 points away from the left
boundary. The 40 rightmost points of the signal were
cut away. The relaxation ”tail” was extrapolated up to
a total length of 8192 points.

4 Transfer functions

According to the theory of wave guides, the acoustic
behavior of a piece of tube of length L (as seen from the
input of the piece of tube at x = 0 and from the output
at x = L) can be linked in the frequency domain by a
scattering matrix:(

U0

UL

)
=

(
H11 H12

H21 H22

)(
P0

PL

)
(11)

When this system of equations is solved for U0 and
UL (like here), it is named ”scattering matrix with
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admittance representation”. We refer to the functions
H11, H12, H21 and H22 with the generic denomination
”transfer functions”.

Our concern now is to obtain a discrete numerical
version of these transfer functions, computed according
to our scheme (9). For this, we have to compute the
wave propagation in the piece of tube between x = 0 and
x = L for 2 different arbitrary initial conditions A and
B. The corresponding flows are computed with Eq (7).
We notate P0A the Discrete Fourier Transform of the
pressure signal p0 for the arbitrary initial condition A,
and similarly for P0B , P1A and P1B . The corresponding
flows are denoted: U0A, U0B , U1A and U1B . Applying
Eq (11) for the arbitrary initial conditions A and B leads
to:

H11 = (−P2BU1A + P2AU1B)/C

H12 = (P1BU1A − P1AU1B)/C

H21 = (−P2BU2A + P2AU2B)/C

H22 = (P1BU2A − P1AU2B)/C

C = (P1BP2A − P1AP2B) (12)

5 Validation

5.1 Comparison with the analytic
formula

We conducted many simulations for different pieces
of pipe with constant curvature and compared the
results with the analytical formula given in [9]. The
following parameters are used: length of the pipe
L = 70cm, spatial step h = 1/20cm, M = 400,
extrapolation of the relaxation ”tail” on 16384 points.
We observed practically no differences in the precision
reached by the simulations, between the different
curvatures and the different loss coefficients ε.

Results: inside the frequency band of validity of the
WL equation (about up to 2kHz), the deviation for all
transfer functions compared to the analytic formula do
not exceed 0.015dB on the module and 0.003rad on the
argument. Up to 8kHz, the maximal deviation is: 0.6dB
on the module and 0.12rad on the argument.

0.1 0.2 0.3 0.4 0.5 0.6
x

0.2

0.4

0.6

0.8

1.0

Figure 3: Bell profil of a trombone. Abscissa x [in
m] and from dark to light: profile of the bell r(x) [in
dm], r′(x) and r′(x)/r(x) [arbitrary units].

5.2 Validation with measurements of a
trombone bell

The simulation results are compared to the
measurements of the input impedance published in [10]
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Figure 4: Normalized input impedance of the bell. Top:
modulus in dB (20 log10) Bottom: phase in radians.
From dark to light: measurement, simulation with the
EDSC method and simulation with 5 pieces of pipe with
constant curvature, according to [4]
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Figure 5: Modulus of the reflection coefficient of the
bell. From dark to light: measurement, simulation with
the EDSC method and simulation with 5 pieces of pipe
with constant curvature, according to [4]

for a trombone bell (Courtois 155R). The curvilinear
abscissa x is extracted from the measurements of the
radius of the bore (43 points unequally spaced). The
radius r(x) and its first derivative r′(x) are interpolated
according to Eq (2). The length of the bore is divided
in 20 equally spaced steps (plus 5 fictitious points on
each side). The corresponding weights y(m) (equally
spaced) are obtained by a least squares fit. Fig. 3
illustrates the radius of the trombone bell r(x), its first

derivative r′(x) and the ratio rp(x) = 2r(x)
r′(x) , plotted

along the axis x.
The radiation impedance was simulated according

to the model Z5 used in [4, 11]. The results for the
normalized input impedance Zin = A(0)/(ρc)Pin/Uin

are depicted on Fig. 4. The accuracy is very satisfactory
and even better than the best model (M�) in [4],
especially for the phase (between 800 and 1300Hz) and
for the reflection coefficient Rin = (Zin − 1)/(Zin + 1)
(see Fig. 5). We explain this result because the loss
coefficient ε(x) varies with the diameter in our model,
while in [4], it was taken constant for each piece of pipe
constituting the trombone bell.
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5.2.1 Computing time

In the context of an interactive design of wind
instruments, the recomputing time after a modification
of the bore has to be short. We give here some
indications of the computing time for the transfer
functions of the trombone bell on a quite archaic
PC with Intel processor 2.66 GHz. Simulation of 2
propagations with different initial conditions: 0.546 s.
Extrapolation of the signals, Fourier Transform and
computation of the transfer functions: 0.421 s. Total
computing time. 0.967 s.

Computing time of the transfer functions according
to [4], as a concatenation of 5 pieces of pipe with
constant curvature, according to the analytical formula:
1.186 s. The computing time for the division of the bell
into 5 pieces with constant curvature and C1 regularity
is not included.

6 Conclusions

The EDSC method appears to be efficient and
accurate for the computation of the transfer functions
with the proposed algorithm. The duct has not to be
subdivided as usual into different pieces of pipe, which
have to be concatenated afterwards. Any bandlimited
function can be used in order to define the radius of
the duct. The simulation of the wave propagation in
the duct requires the computation of one convolution
per spatial step. Efficient algorithms are available
for this task. The only delicate step is the accurate

discretization of ∂
3/2
t RSKN (t) with the analytical Eq

(13), which has to be performed only once and can be
stored as a lookup table (see Appendix). The method
is promising for solving other equations with fractional
derivatives.
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A Derivatives of the RSKN

kernel

The RSKN kernel (5) can be analytically integrated.
Moreover, for real values of d (fractional derivatives and
antiderivatives), the general expression is

(RSKN (πt))(d) =

2
d−2
2 πd− 5

2 σ2−d

9N

(
cos

(
πd

2

)
ψ(t, 0) + d sin

(
πd

2

)
ψ(t, 1)

)
(13)

with

ψ(t, s) =

Γs

N− 1
2∑

n= 1
2
−N

e
−n2σ2

2N2 ν(t)s 1F1

(
1

2
(d+ s+ 1), s+

1

2
,−ν(t)2

)

Γ(t) =

∫ ∞

0
xt−1e−x dx , Γs = Γ

(
d+ 1− s

2

)

ν(t) =
−Nt− inσ2

√
2Nσ

, 1F1(a, b, z) =

∞∑
k=0

akz
k

bkk!

a0 = 1 , ak = a(a+ 1)(a+ 2)...(a+ k − 1)

Notice that the formula (13) is not valid for zero and
negative integer values of d, because the Γ function is not
defined (analytical formulas for these cases can be found
in [1]). The function 1F1 is called ”Kummer confluent
hypergeometric function”.
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