
Dependence of the acoustic power produced by a woodwind on the
tonehole size

A. Guilloteau, P. Guillemain and J. Kergomard
CNRS - LMA, 31 Chemin Joseph Aiguier, CNRS - LMA, 13402 Marseille Cedex 20, France

guilloteau@lma.cnrs-mrs.fr

ISMA 2014, Le Mans, France

241



It is well known that for a given note the position of woodwind toneholes can be chosen by the maker in a certain
portion of the instrument, provided that the radius is properly chosen: a wide radius needs to be located further
from the reed than a narrow one. In our work a simplified problem with one radiating source only is investigated:
the problem of a short diaphragm at the end of a cylindrical tube, excited by a clarinet-like reed/mouthpiece.
We consider tubes of different lengths provided with diaphragms of different radii, in order to keep a fixed playing
frequency. Obviously the power radiated by the orifice decreases when the diaphragm radius decreases. But it is not
intuitive that when the radius is large enough, the power is found to be almost independent of the radius. Indeed
it can be shown that the radiated power depends only on the output flow rate. Moreover energy considerations
show that the ratio between the input pressure and the output flow rate does not depend on the length, thus on
the diaphragm radius. Finally when losses are ignored, the input pressure depends on the excitation pressure in
the mouth but is independent of the tube. At low level of excitation, this simple explanation is confirmed by
both numerical calculation and experiment, but experiment confirms the importance of nonlinear effects with flow
separation due to sharp corners.

1 Introduction
When designing a woodwind for a given playing

frequency, the maker can choose the size and location of
a tonehole in a rather large range. If the choice is a very
wide hole, the effect is close to that of cutting the tube at the
hole location, at least at low frequencies. However it is also
possible to choose a narrower hole with a location chosen
upstream of the wide hole.

The present paper aims to investigate the following
subject: is the above mentioned choice important for the
amplitude of the acoustic radiated power? Obviously if the
hole has a size tending to zero, the acoustic power radiated
by this hole tends also to zero. But what happens when the
size of the hole increases? How increases the power? To
our knowledge, this question has not yet being treated in the
literature. The answer is not necessarily intuitive, because
at low frequencies the real part of the radiation acoustic
impedance (which is defined as the ratio of a pressure to a
flow rate) does not depend on the size of the hole).

In the present paper we consider a simplified problem,
with only one radiating orifice: a tube terminated into a
constriction of different sizes, excited by a clarinet-like reed
and mouthpiece (for flute-like instrument, there would be
more than one orifice, because of the existence of the mouth
hole, which is a part of the exciting system). The effect of
this simplification is discussed in section 2.4. Moreover,
the scope of this paper is limited to notes whose frequency
corresponds to the first impedance peak.

Figure 1: Geometry of the tube with diaphragm. The length
` depends on the diaphragm radius b, with a fixed first

resonance frequency f1 = 250Hz.

The geometry is shown in Fig.1. A cylindrical tube of
radius1 a = 7.45 mm is terminated in a cylindrical diaphragm
of length `d = 5 mm, which is approximately equal to the
wall thickness of a clarinet, and of radius b, which is chosen
among the following values: 6, 5, 4, 3, 2 mm (For a clarinet,

1Common output radius of a mouthpiece.

the tonehole radius varies from 2 or 2.5mm in the higher
part of the instrument to 6mm for the hole which is close
to the bell). The case of a tube without diaphragm is also
considered. The length ` of the tube is chosen in order
to keep the first resonance frequency independent of the
diaphragm radius, as explained below, equal to 250 Hz.
Thus ` depends on the diaphragm radius, similarly to the
case of a tube with a tonehole. Without diaphragm, if the
sound velocity in free space at 20◦C is c = 343.4 m.s−1, ` is
equal to 328 mm. With a diaphragm, the length ` is equal to
323, 317, 306, 286, 237 mm for the widest to the narrowest
radius, respectively. The tube thickness is w = 7.55 mm. The
tube is excited by a clarinet-like reed and mouthpiece.

In section 2, we present an elementary theoretical
analysis, limited to the first harmonic, for reasons explained
further. Then we show that complete simulations of self-
sustained oscillations lead to more precise results (section
3), and section 4 shows experimental results.

2 Elementary theoretical analysis
(power radiated by the first harmonic)

2.1 Simplified linear model of the resonator
For the calculation of the radiated power, two transfer

functions of the resonator have to be determined in the
frequency domain: the transfer admittance between the
output flow rate Uout and the input pressure Pin for the
radiation and the input impedance Zin = Pin/Uin for the
coupling with the excitation mechanism. For these transfer
functions, the simplest model of the present section ignores
the resonator losses (i.e. both boundary layer and radiation
losses). However assuming that kb << 1, and therefore
assuming that the diaphragm radiates into infinite space as a
monopole, the mean radiation power can be deduced from
the knowledge of the flow rate Uout,

Pr =
1
2
<(Zr)|Uout |

2, (1)

where Zr is the radiation impedance. As discussed above, the
real part of this impedance does not depend on the diaphragm
radius:

<(Zr) =
k2ρc
4π

, (2)

k = ω/c is the wavenumber, where ω is the angular
frequency, and ρ is the air density. The cross section areas of
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the tube and diaphragm are denoted S = πa2 and S d = πb2,
respectively. The model is based on the following (standard)
transfer-matrix relationship:(

Pin

Uin

)
=

(
cos(k`) jZc sin(k`)

jZ−1
c sin(k`) cos(k`)

) (
1 jωMt

0 1

) (
0

Uout

)
.

(3)
Zc = ρc/S is the characteristic impedance, and j = (−1)1/2.
The value of Mt, the total acoustic mass of the diaphragm,
is not discussed here. When radiation losses are ignored, the
radiation contribution can be assimilated as an acoustic mass
Mr in this low frequency analysis, with the following value
of the output pressure: Pout = jωMrUout. Mt/Zc, which
involves Mr increases when b decreases. Compressibility
effect inside the diaphragm is ignored. This implies k`d <<
1.

2.2 Transfer admittance of the resonator
If both visco-thermal and radiation losses are ignored, the

input impedance can be deduced from Eq. (3),

Zin = jZc tan
[
k(` + `eq)

]
(4)

k`eq = arctan
[
ωMt

Zc

]
. (5)

The transfer admittance is given by:

Uout

Pin
=
− j
Zc

cos(k`eq)

sin
[
k(` + `eq)

] . (6)

The equivalent length `eq a priori is frequency dependent:
it decreases when the frequency increases, therefore the
diaphragms generate positive inharmonicity. For the case
without diaphragm b = a, the choice of the total length
` + `d implies the choice of the first resonance frequency,
f1 = c/4/(` + `eq), where `eq = `d + δda (δd ' 0.7). For the
other cases the same resonance frequency is chosen, then the
equivalent length `eq is given by Eq. (5) and the length ` is
deduced from Eq. (4), with an infinite input impedance:

` =
π

2k1
− `eq. (7)

Then the transfer admittance simplifies in (− j/Zc), if the
following condition is fulfilled:

k1`eq << 1 (8)

or
ω1Mt << Zc. (9)

Considering Eq. (2) and if the condition (8) is fulfilled, i.e.
if the diaphragm is not too narrow, its diameter has no effect
on the radiated power for a given input pressure Pin. For
instance, if with k1`eq < 0.1, the radius needs to satisfy: b >
5.2 mm.

2.3 Reed and mouthpiece coupled to the
resonator

It remains to take into account the excitation mechanism,
in order to analyze the relationship between the radiated
power and the excitation pressure, which is the pressure

pm in the instrumentalist’s mouth. For this purpose, the
classical model proposed in [1] is widely acceptable, and is
simplified by ignoring the reed dynamics: with the quasi-
static nonlinear characteristic uin = F(pin), where pin(t) and
uin(t) are the inverse FT of Pin(ω) and Uin(ω). When no
diaphragm is present the resulting pressure signal pin(t) is a
square signal because resonator losses also are ignored (thus
all resonances are infinite and with harmonic frequencies).
Then it is easily shown that assuming the validity of Eq.(2)
the radiated pressure is the derivative of a square signal.

However a problem occurs: such a signal corresponds
to an infinite power. The reason is that Eq.(2) is not valid at
higher frequencies. Therefore for the elementary analysis we
use the approximation of the first harmonic, and will refine
the calculation in the next section. Near the threshold, the
higher harmonics are very weak, and this is particularly true
when inharmonicity occurs (because of the diaphragms). In
Ref.[2], the following relationship was found for the first
harmonic:

Pin(ω1) = pM

√
Y1 − A

3C
(10)

pM is the closure pressure, proportional to the reed stiffness
and to the reed opening at rest; Yn = Zc/Zin(nω1) is the
dimensionless input admittance. Eq. (10) implies that Y1
is real, and therefore the value of the operating frequency
can be deduced. A and C are the first and third orders of
the Taylor expansion (around pin = 0) of the nonlinear
characteristic F(pin). Because the resonator losses are
ignored, Y1 = 0 and the input pressure Pin(ω1) at frequency
f1 does not depend on the radius of the diaphragm; this is
also true for the output flow rate Uout(ω1) as well as for the
radiated power. We summarize the hypotheses of this result:
the diaphragm is wide enough (condition (8)); no resonator
losses are considered; and the input acoustic pressure is
reduced to a sine signal. The value of the power radiated by
the first harmonic is:

Pr =
k2ρc
8π

1
Z2

c
p2

M

(
−

A
3C

)
. (11)

This nonlinear relationship is written in dimensionless
quantities in [3]. The simplest control parameters that can be
defined with such a model are the mouth pressure pm and the
reed channel opening area S c. Corresponding dimensionless
quantities are γ = pm/pM and ζ = ZcS c

√
2/(ρpM),

respectively. The values of the polynomial coefficients are:

A = ζ
3γ − 1
2
√
γ

; C = −ζ
γ + 1
16γ5/2 . (12)

Notice that the oscillation threshold γ = 1/3 (A = 0) does
not depend on the diaphragm as well, and that the Taylor
expansion of the function F(pin) is valid for a non-beating
reed only, approximately for γ < 1/2.

2.4 Generalization to a side hole

The generalization of the elementary approach to
a unique side hole is possible, with some restrictive
hypotheses, because it is impossible to treat in a simple
way the general case of a complete lattice of toneholes.
Considering a tube of total length L, and one tonehole
located at a distance `down, and ` from the tube end and entry,
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respectively. When it is closed, the frequency is c/(4L),
and when it is open, it is c/(4L1), with L = ` + `down and
L1 = `+ `eq. We suppose that there is one semi-tone between
the two frequencies, i.e. L1 ' 0.94L. At low frequencies,
the tube portion downstream the hole is an acoustic mass,
ρ`down/S , in parallel with the acoustic mass of the hole Mh

and that of the tube. Consequently we can use the model
given by Eq. (3), replacing the mass Mt by Mdh given by:

1
Mdh

=
1

Mh
+

S
ρ`down

. (13)

In order to use the same analysis than for a diaphragm, Mdh

needs to be small; actually M−1
dh > M−1

h , therefore if the
acoustic mass of the hole is sufficiently small, the analysis
applies. Moreover the flow rate Uout entering the mass Mdh

is the sum of the flow rates going out of the hole and of the
tube. If the distance `down is smaller than the wavelength, the
total flow rate radiates as a single monopole in the far field,
and Eq. (1) remains valid. Therefore the elementary analysis
remains valid if the hole is wide enough.

2.5 Taking losses into account
When taking losses into account, we observe a small

decrease of the input impedance at frequency f1 when the
diaphragm radius decreases, thus a small decrease of the
ratio pM/Pin(ω1) (see Eq. (10)). Another effect of the losses
is a shift of the oscillation threshold. The same equation
(10) shows that because < [Yin(ω1)] is positive, the value
of the threshold value of the coefficient A, and therefore
that of the mouth pressure γ, increases. Strictly speaking, a
consequence is that at very low excitation levels, where the
power is a quasi-vertical function of the excitation level, the
effect of the diaphragm radius is very strong for a fixed γ.
But the practical consequence is small because the power
remains weak. Notice that near the threshold the sound is
really sinusoidal, therefore the previous analysis is relevant.

3 Numerical simulation of the power
for a complex signal

With the help of the numerical tool developed in [4]
sound synthesis can be realized to obtain the input pressure in
both the non-beating and beating reed regimes, considering
a sound with several harmonics. The simulation uses the
computed input impedance, and the modal expansion is
determined by optimization. The number of resonator
modes is fixed to 4, corresponding to contributions below
approximately 3 kHz. The reed dynamics is taken into
account with one reed mode. Realistic value of the reed
natural frequency is chosen to be fr = 2341 Hz and the
quality factor Qr = 0.8.

In order to reach the steady-state regime for different
values of the excitation pressure γ, the computation is done
considering a step function for γ(t). The simulation provides
the spectrum of the input pressure pin, then the transfer
functions are calculated by using Eq. (6). The number of
harmonics considered here are only limited by the Nyquist
frequency (Fe/2 = 22050Hz). Obviously the model of
the resonator is not suitable at very high frequencies, but
the contribution of the highest harmonics to the radiated
power is very small. Fig. 2 shows the results for the

diaphragms of different radii. In the beating reed regime and
before extinction, the radiated power ratio between the two
extremes configurations doesn’t exceed 3 dB for a sound
power level that approaches 95 dB.

Notice that the playing frequency is slightly increasing
when the pressure γ increases, about 30 cents between
the oscillation and extinction thresholds because of the
inharmonicity effect. The main difference with the simplest
analytical result (11) is probably the effect of the threshold
shift who distinguishes the different curves, especially for
small radii. We do not discuss here the influence of the
spectrum.
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Figure 2: Radiated power computed for the six
configurations. The line darkness is proportional to the

considered diaphragm radius.

4 Experiment
Experiments were carried out with a static pressure

controlled device provided with artificial lips to handle the
reed aperture as explained in [5]. No sound was obtained
for the narrowest diaphragm (b = 2 mm). The power is
not directly measured in an anechoic room but a pressure
measurement is realized and primary reflecting surface were
covered with acoustic foam to minimize interferences. A
half inch Bruel & Kjaer microphone was located at 50 cm
from the radiating orifice and the RMS sound pressure level
is extracted with a 50 ms integration time and represented
in figure 3. Measurement of the static pressure in the
downward cavity of the mouthpiece is performed with a
Endevco piezoresistive pressure transducer. Acquisition
were carried out at a 20kHz sampling frequency for a
fixed 2 minutes duration, and divided into two parts for the
increasing and decreasing linear pressure ramps.
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Figure 3: Measured sound pressure level radiated at a
distance of 50 cm from the diaphragms. The self-sustained

oscillations are managed with an artificial mouth and a
controlled static pressure. Only the slowly decreasing
pressure ramps (3 kPa.min−1) are represented to focus
around the threshold region. No sound was able to be

emitted with the 2 mm diaphragm.
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Our interest is focused on the relative values between the
different cases, not on a quantitative comparison between
theory and experiment which implies a determination of
the parameters of the mouthpiece and reed. Moreover the
measurements are limited to a pressure measurement, and
this is proportional to the total acoustic power only if the
radiation is really that of a monopole. At low excitation
levels, Fig. 3 shows that for the three higher values of
the radius, b = 5, 6, 7.45 mm, the difference in radiated
pressure is close to 2 dB, while it is much more important
for narrower diaphragms, around 15 dB between b = a and
b = 3 mm : this value is much larger than that found by
simulation.

These two features can probably be explained by the
existence of nonlinear losses due to the generation of
turbulence at sharp edges of the hole. Using Eq. (6) and
the approximated formula given in Ref. [6], it is possible
to find an order of magnitude of the acoustic velocity at
the tube end (thus of the acoustic Mach number), and to
confirm this hypothesis. This phenomenon was investigated
in Refs.[6, 7].

Further experiments will be done with diaphragms having
rounded corners, in order to investigate these effects.

5 Conclusion
What is the effect of the tonehole radius on the radiated

power for a given playing frequency? A general investigation
could be very difficult. After the present work, a first answer
could be the following: no, if two conditions are fulfilled: i)
the radius is not too small; ii) the excitation level is not too
high.
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