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A methodology and working implementation for synthesis of physical models, solved with symplectic and multi-
symplectic finite difference algorithms running on a Field Programable Gate Array (FPGA), capable of auralising
instrument models in real-time, presented by the author, is extended to synthesize the physical model of a grand
piano-hammer/string-course interaction coupled to a soundboard. The piano hammer string interaction is modeled
as a non-linear hysteretic impact model and iterated with a finite difference time domain integration scheme. The
three strings of the course are iterated numerically with a symplectic Euler scheme time integrator and central finite
difference approximation of the spatial domain. The soundboard is modeled as a 2-dimensional Kirchhoff plate
with a non-linear normal load distiburtion resulting from the inclusion of a virtual piano bridge, and orthotropic
material properties due to different Youngs moduli in the respective grain directions of the wood. The coupling
between the strings and the soundboard is modeled by an impedance coupling at the interaction point, allowing
vibrations from the soundboard to couple back to the strings, influencing the vibrations of the strings. The model
is implemented on two XILINX ML605 FPGA development boards connected by a high speed IO port via the
on-board SMA ports. The implementation is capable of auralising the sound radiated from the front plate and
integrated to two virtual listener positions in real-time. It is possible to change physical parameters like the coupling
strength, parameters of the hammer model, the tune of the strings and multiple others while playing.

1 Introduction
Physical modeling of the complete grand piano or

single constituents of the instrument is an active field of
research, especially over the last thirty years. Treatises
regarding physical models of certain features of a piano
are for instance the works of Bacon [30] , Boutillon [5],
Chaigne [17]; [18], Chabassier [2]. Most of these works are
based on the large body of research regarding the acoustical
properties of the grand piano as well as the upright piano
(see: [7, 6, 16]). Several works regarding physical models
of pianos show that important features can be described
satisfactorily with mathematical models (see for instance [3])
other mechanisms still escape a description, like for instance
the exact role of the piano bridge and the influence on the
string vibration [2], or the specific losses in the soundboard
[19]. In many of these works, researchers are confronted
by a multitude of different physical parameters influencing
a certain part of a model. Because the computation time of
physical models rises with its complexity, most numerical
implementations of physical models are not capable of
synthesizing sounds in real-time or even close to real-time.

In this work, a methodology for computing a finite
difference physical model of certain aspects of the piano
in real-time is presented. It is an initial effort to show
the feasibility of calculating a physical model of a large
instrument, such as the piano, on a Field Programmable Gate
Array (FPGA). The implementation is based on a similar
methodology, developed at the Institute of Systematic
Musicology (Hamburg), for several lute instruments as
presented by the author [10]. The physical model, presented
in this work consists of a grand piano string course coupled
to a wooden soundboard and a non-linear hammer impact,
and is capable of auralising the synthesized sound in real-
time. There are several related works regarding real-time
physical models calculated on a FPGA like the work of
Chen et al. [23], which presents a model to compute the
2-dimensional wave equation with a Finite Difference Time
Domain (FDTD) scheme on a FPGA. A physical model of a
single string computed in real-time on a FPGA is proposed
by Gibbons et al. [22]. Other notable publications, regarding
numerical calculation of the wave equation using finite
difference methods are works by Motuk et al. [26, 27] where
a FDTD algorithm is utilised to solve the 2-dimensional
wave equation for membranes and plates.

2 Physical model

2.1 Piano-hammer-string interaction
The model of the piano hammer is based on a non-linear

hammer-force/string interaction with hysteresis due to the
compression characteristics of the felt covered hammer
tip. The forces acting at the contact point between a
piano hammer and a string course was subject to manifold
research. Askenfeldt et al. researched the non-linear
interaction between a piano hammer and a string with
electrodynamic measurement techniques [7], Stulov utilised
a device to measure the exerted force of the hammer
and proposed an exact model of the non-linear hysteresis
properties of the felt tip [12]. More recently, Birkett [11]
showed the influence of the hammer-shank movement on
the acting hammer force as well as an accurate measurement
of the compression of the hammer felt, applying high-
speed camera recordings and motion tracking methods. A
comprehensive four parameter model of the force exerted by
a piano hammer is proposed by Stulov [12]. This model was
simplified in a later work [15] to a three parameter model,
without a loss of accuracy inside the range of realistic
hammer velocities below 10 m

s . It can be written as:

Fcontact = −F0

[
(1 − ζ) xγ + τxγt

]
(1)

with ζ and τ the hereditary (state preserving) parameters
of the hammer felt, γ a non-linear exponent depending on
properties of the felt varying between 1.5 and 2.8 for new
hammers, and 2.5 − 3.9 for used hammers.[29] x is the
compression of the hammer tip felt due to the interaction
with the string at the contact point, and F0 the hammer
stiffness. The subscript t indicates a differentiation by time.

2.2 String model
The transversal and the longitudinal motion of a linear

string can be described by the 1-dimensional wave equation,
also known as the d’Alembert equation. Inside a domain x ∈
0, · · · , L with the boundary conditions u|x=0 = u|x=L = 0 the
differential equation is given as:

utt − c2 · uxx = 0 (2)

with u the deflection in vectorial form, c =
√

T
µ

the wave
propagation speed, with T the tension applied to the string,
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and µ the linear density. uxx and utt indicate a second order
differentiation by x and t respectively. For most stringed
lute instruments, equipped with short and reasonably flexible
strings, equation 2 suffices to describe the transverse motion
of the string, which is the main mode of vibration radiated
from most lute instruments.

In contrast to this, piano strings show characteristic
effects not described by equation 2, which must be taken into
account in a physical model. Because of their comparably
large diameter and stiffness, which is due to the high string
tension applied in pianos, two effects have an impact on
the vibration of the strings: (a) The bending stiffness,
giving the piano string a bar-like characteristic and giving
rise to detuning [16], and (b) Longitudinal modes of the
string, which have a noticeable influence on the perceived
sound of the instrument [8]. The bending stiffness can be
implemented by adding a fourth order beam-like term to
equation 2

utt − c2 · uxx + κ · u4x = 0 (3)

with κ = ES K2

µ
a factor consisting of the Young’s Modulus

E, the cross-sectional area S , the radius of gyration K, the
linear density µ, and the subscript 4x indicating a fourth order
differentiation in respect to x.

The longitudinal motion of the string also obeys
equation 2. A geometrically correct interaction between
the longitudinal and the transverse motion of the string is
proposed in Chabassier et al. [2], taking the influence of
the longitudinal motion on the tension of the string into
account. In the model applied in this work, the variable
tension effects are neglected and only the transversal to
longitudinal coupling is implemented as a transversal
deflection dependent excitation of the longitudinal motion as
proposed Bank and Sujbert [24]. Resulting in the following
formulation for the longitudinal deflection ξ:

ξtt =
T
µ
ξxx + ES

1
2

[u2
xx]x (4)

In addition to the bending stiffness and the longitudinal
motion of the string, real piano strings are subject to several
kinds of losses: a) velocity damping due to air friction,
b) internal damping due to material imperfections, c)
losses due to energy transfer at the bridge. The first two
effects are included directly into the formulation of the
differential equation as presented by Chaigne and Askenfelt
in [17, 18]. An extension to the internal damping, also
known as frequency dependent damping, is proposed by
Bensa et al. [25]. The final form of the equation used to
model the transversal motion of the string including all of
the mentioned effects can be written as:

utt = c2 · uxx − κ · u4x − βut − αuxxt. (5)

The last two terms indicate the velocity dependent damping
and the frequency dependent damping with the two damping
constants β and α. The values for β and α are taken from
literature [25, 2].

2.3 Soundboard model
The piano soundboard amplifies the vibrational energy

of the strings, which is transferred via the piano bridge. In
upright pianos it has a rectangular shape, and a more difficile
geometry in the case of a grand piano. The soundboard

modeled in this work consists of several non-linearities
like orthotropic material constants due to the physical
properties of the utilised wood (Sitka spruce is utilised
here), discontinuities at the edges of the individual planks,
which are glued with animal glue, a non-linear distribution
of stresses due to the crowning and the normal loads of the
bass and treble bridge [19, 20].

The orthotropy of the material leads to different wave
velocities in the respective grain directions, which are
standardly denoted by VL for the longitudinal, VR for
the radial and VT for the transversal directions. The
planks utilised for a piano soundboard are commonly a
longitudinal/transversal cut and are selected on aesthetic
grounds as well as the regularity of annual rings which can
vary between 0.7 and 3 mm depending on the position in
the instrument (see Bucur [21]). A few basic assumptions
regarding the model of the soundboard are formulated
upfront:

• The height of the soundboard, which is somewhere
between 6 − 9 mm, is small compared to the extent
in the other two dimensions. Hence, it is reasonable
to apply a 2-dimensional plate theory for a physical
model.

• The deflection of the soundboard is small, meaning
large amplitude effects can be left out of the
consideration.

• Deformations due to transverse shear stresses
included in the Reissner-Mindlin plate model, are
not as important due to the small height of the plate.
Therefore the Kirchhoff-Love plate theory can be
applied.

• The ribs are included as additional masses and heights
at the respective rib positions.

• The discontinuities at the glued ribs due to the high
stiffness of animal glue are not taken into account.

• The normal force due to air loading is not taken into
account in this model.

Using the constants from Table 1, the bending moments
M on an orthotropic plate are given by following differential
equations:

Mx = −[Dx · uxx + Dxy · uyy] (6)
My = −[Dx · uyy + Dxy · uxx]

Mxy = −2 · Ds · uxy,

Table 1: Orthotopic plate constants.

Dx =
EL

1−νLνT
h̃3

12 Dy =
ET

1−νLνT
h̃3

12

Dxy =
ELνT

1−νLνT
h̃3

12 Dyx =
ELνT

1−νLνT
h̃3

12

Dsh =
Gh̃3

12

G is the shear modulus and h̃ = h(x, y) the variable height
of the plate, E are the Young’s moduli and ν the Poisson
ratios which depend on the elastic properties of the wood.
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Using the shear forces and the assumption that Mxy = Myx,
the governing differential equation can be written as:

h̃ · ρ̃ ·utt − (Mx
xx+2 ·Mxy

xy +My
yy) = −Fb(x, y)+Fs(x, y, t), (7)

with Fb(x, y) the static force of the bridge, Fs(x, y, t) the time
varying force of the string course, and ρ̃ = ρ(x, y) the mass
at the respective points on the soundboard. Figure 1 shows
the geometry and the position of the ribs of the modeled
soundboard.

Figure 1: Geometry of the implemented grand piano
soundboard, modeled after a Steinway grand piano.

2.4 Coupling model
The bridge of the piano acts as a transducer of string

energy to the pianos soundboard. The exact properties of the
bridge and its influence on the radiated sound is still under
active research and there are indications that subtleties of
a piano bridge have a direct influence on the sound of the
piano [2]. The coupling from the string to the soundboard is
implemented by an approximation of the transversal force at
the interaction point. The force of a stiff string acting at the
bridge can be written as:

Fcp = B · uxxx + T · ux, (8)

with B the bending stiffness and T the tension of the string.
Because the impedance from the soundboard to the string

is small, the coupling is approximated by a real mechanical
impedance as Zstr =

Fcp

vcp
or reordered:

Fcp = Zstr · vcp (9)

Although the assumption is not completely physically
justifiable it is a feasible approximation over a certain
frequency range.

3 Numerical model
The numerical solution of the system of differential

equations is implemented with explicit finite difference
schemes. The force of the hammer is calculated utilising a
FDTD scheme [14]. The differential equation of the strings
and the soundboard are semi-discretised to yield a number
of coupled ordinary differential equation which can be
integrated by the symplectic Euler algorithm as presented in
by the author [28]. The methodology is as follows, 1) the
differential equation without losses is semi-discretised in
the spatial derivatives, 2) the terms for the losses are added,

3) the resulting system of coupled ordinary differential
equations is iterated in time applying the sympectic Euler
time integration scheme. As shown by Luo and Guo [1],
energy losses can be added to the basic formulation of a
symplectic integrator without the loss of overall accuracy of
the method.

3.1 Finite difference operators
For reasons of brevity and compactness, a finite

difference operator notation is applied in this work, similar
to the notation used in Bilbao [14]. A discrete shift
operator is indicated by ϵ with ϵt−u[t, k] = u[t − ∆t, k] and
ϵx−u(t, k) = u[t, k − ∆x]. A forward//backward difference
approximation of a 1-dimensional vector u at position k can
be written as:

δx+ =
1
∆x

(ϵx+ − 1)
//
δx− =

1
∆x

(1 − ϵx−) (10)

Higher order operators can be derived from these
fundamental ones, i.e. δxx = δx−δx+. A bold operator δxxu
indicates that the operator is applied over the whole domain
of u effectively resulting in a matrix vector multiplication.

3.2 Discrete hammer-string model
Utilising Newtons second law of motion, equation 1 can

be rewritten as

xtt =
−F0

m

[
(1 − ζ) xγ + τxγt

]
(11)

with m the mass of the hammer head and the hammer shank.
The differential term on the left side of the equality sign
can be approximated numerically with a centered finite
difference, the right side with a backward finite difference:

xtt ≈ δtt x =
−F0

m
[
(1 − ζ) xγ + τδt−xγ

]
(12)

Reordering this equation to ϵ+x results in following scheme:

ϵt+x =
F0

m
· ∆t2[(1 − ζ) xγ + τxγ(1 − ϵ−)] − ϵt−x + 2x (13)

This equation can be iterated recursively in time by applying
the initial conditions derived from the start velocity of the
hammer and the other material parameters taken from [15].

3.2.1 Discrete string course

The semi-discretisation of the string is achieved by a
partitioning the string u ∈ 0, L into N parts. The transversal
deflection of the string is calculated as: AsT

VsT

UsT

 = T∪
t=1


(δxx(1 − αδt−) − κδ4x) · [ϵt−u] − βϵt−v

ϵt−v + a
ϵt−u + v

 .
(14)

IntroducingAsT ,VsT ,UsT the acceleration, velocity and the
deflection of the transversal string motion over the complete
spatial- and time domain. a, v,u are the acceleration, velocity
and deflection over the spatial domain.

∪
is the discrete

Hutchinson operator indicating a summation over the spatial-
and time domain.

Similar to the approach used in [13], the longitudinal
motion is discretised with a larger spatial stride because
only the first few modes are of interest in the radiated sound.
The integration scheme can be written similar to scheme 14,
omitting the fourth-order term.
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3.3 Discrete soundboard
The numerical scheme of the soundboard has a similar

structure as the model for the string with the difference that it
is discretised in two dimensions. The semi-discretised time
integrator can be written as: AVU

 = T∪
t=1

· · ·


δXY
[
δ̃XY · [ϵt−M] (1 − α · δt) − β · ϵt−v

]
ϵt−v + a
ϵt−u + v

,

(15)
with δ̃XY = (Dxδxx +Dyδyy + 2(Dxy + 2Ds)δxy) weighted with
the variable height, respective Young’s moduli and Poisson
ratios and a formulation for fixed boundary conditions at the
rim of the soundboard and δXY = (δxx + δyy + 2δxy).

4 Hardware implementation
The real-time version of the algorithm in hardware is

achieved by implementing the finite difference scheme
in the hardware description language VHDL. All core
calculations of the algorithm are implemented with a fixed
point Q0.31 two’s-complement data type. As presented by
the author [10], several beneficial features can be applied
to accelerate the calculation of finite difference models
using this data-type. As depicted in Figure 2 the physical
model is implemented on two Virtex ML605 boards that are
connected by coaxial cables. Board 2 is connected via a
PCIe port to a standard PC. Figure 2 shows a block diagram
of the implementation.

Hammer-String Interac�on Plate Computa�on

Parallel String Calcula�on

Parallel String Calcula�on

Parallel String Calcula�on

SMA Input/Output Bus SMA Input/Output Bus

ML605 A

ML605 B
PCIe IO

Sound Integra�on
Hammer

1 2

3

Figure 2: Block diagram of the FPGA model.
1) String/Hammer parameters. 2) Plate parameters.

3) Integrated sound.

In contrast to common Digital Signal Processing (DSP)
chips or standard CPUs, which perform most calculations
sequentially, FPGAs inherently have a parallel structure.
Meaning, all logic resources on a FPGA compute the
assigned logic functions at the same discrete time step. If
one wants to implement sequential algorithms, particularly
algorithms that depend on calculations from preceding time
steps, a Finite Stat Machine (FSM) has to be implemented.
The FSM ensures defined discrete computation steps with
well-defined results at the end of a state.

4.1 Parallelization
The hardware implementation makes use of the parallel

capabilities of the FPGA chip. To this end, the transversal
calculation of the string is divided into parallel sub-
calculation kernels of 10 discrete points which are computed
in parallel. The requirements for a single discrete point of
scheme 14, without the excitation function of the transversal

motion are:

u = f (ϵt−u, ϵt−v, ϵx+u, ϵx−u, ϵx+ϵx+u, ϵx−ϵx−u). (16)

The velocity v, and the deflection u of the preceding time
step are saved in two memory positions which are loaded in
the first FSM step depicted in Figure 3. The values for the
deflection of the adjacent computation kernels are routed in
the first step of the FSM as indicated by the horizontal arrows
in Figure 3.

Accelera�on

Velocity

Deflec�on

Output rou�ng I
Output rou�ng II

RAM Load

Pre-computa�on

Accelera�on

Velocity

Deflec�on

Output rou�ng I
Output rou�ng II

Accelera�on

Velocity

Deflec�on

Output rou�ng I
Output rou�ng II

RAM Load RAM Load

RAM Write RAM Write RAM Write

FSM CLOCK FSM CLOCKFSM CLOCK

Pre-computa�on Pre-computa�on

1

FSM State

2

3

4

6
7

8

5

kk-1 k+1

Figure 3: Three parallel computation kernels. The
horizontal lines indicated the separate states of the

calculation. The horizontal arrows indicate the data transfer
between the kernels.

5 Results
Figure 4 shows the modeled hammer forces for varying

initial velocities of the piano hammer showing the influence
of different initial velocities of the hammer on the shape of
the hammer force.
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Figure 4: Simulated hammer forces with differing initial
velocities.

Figure 5 shows a time series of three individual strings
from the same course as a result to changing hammer
positions on the string. This shows that the contact point
between the hammer and the string can be changed while
playing and the hammer can excite a string in motion
without stopping the string calculation.

6 Conclusion
In this work, a functional real-time implementation

of a string course consisting of three strings, excited
by a hysteretic hammer model coupled to a orthotropic
soundboard with realistic material- and geometrical
properties was presented. The simulation results show good
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Figure 5: Velocity at the bridge with changing hammer
positions .

agreement with measurements and comparable physical
models of this particular system. The analysis of the
hardware design regarding resource and area utilisation on
the chip revealed that the soundboard can be implemented
with a grid size of 80x64 grid-points in real-time on a single
Virtex-6 XCV240t FPGA chip. The complete set of strings
for a 88 key grand piano, consisting of 200 single strings
with a discretisation of 80-160 node points per string, is not
computable in whole on one XVC240t FPGA chip.

The upcoming research project at the University of
Hamburg in collaboration with Steinway Pianos, Hamburg is
aimed at modeling and synthesizing a whole geometry model
of a grand piano computed on more recent FPGA devices,
in special Virtex-7 chips. When extrapolating the resource
utilisation of a whole geometry design conservatively the
model can be implemented on two Virtex-7 FPGAs. This
implementation is part of an ongoing project and will be
subject to future work.
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