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The radiation efficiency, η, is defined as the ratio of the acoustical power output to the mechanical power input. The

mechanical power input and acoustical power output were measured on a set of freely suspended stringed musical

instruments in an anechoic chamber. The instruments were excited on their bridges using an instrumented impact

hammer and the velocity response was measured using an accelerometer. The sound pressure response from the

instrument was measured at 324 locations on two concentric measurement spheres using two microphones. The

power input was determined by taking the cross power spectrum of the force and velocity. A spherical-harmonic

decomposition algorithm was used to calculate the source strengths of the monopole, dipole and other higher

order contributions to the radiated sound fields. Using these source strengths, the acoustical power output for each

contribution was calculated. The total radiation efficiency and that of the individual components is presented in

the frequency range 80 Hz to 2000 Hz. The three instruments studied were a classical guitar (BR2), a carbon

fibre steel string guitar (X10) and a violin. At lower frequencies within this range the output power for all three

instruments is dominated by monopole radiation. At higher frequencies the dipole components contribute more

to the output power. It was found that the peak values of η do not coincide with known body modes for the two

guitars. Normalised sound pressure fields are shown for frequency ranges where the sound pressure profile changes

from a monopole to a dipole.

1 Introduction
Many of the previous studies on the physics of stringed

instruments have focused either on input admittance

measurements (velocity per unit force) across a frequency

range or on the shapes and behaviours of body modes.

Studies of mechanical input power and acoustical output

power have previously been made on two classical guitars

[1] below 550 Hz and at two separate frequencies on

another classical guitar [2]. Radiated sound fields have been

studied at the resonance frequencies of the body modes of

a classical guitar, which had been found using holographic

interferometry [3].

In this paper the radiation efficiency between 80 Hz and

2000 Hz is shown for three stringed instruments; BR2, X10

and a violin. BR2 is a handmade Torres style classical guitar,

X10 is a carbon-fibre steel-string guitar and the violin was

made to a standard design in a violin making school. Sound

fields from BR2 are also shown away from the resonance

frequencies of its body modes.

2 Radiation Efficiency
The term radiation efficiency has been used to describe

several quantities within the literature. The definition used

in this work is that radiation efficiency, η, is the ratio of

the acoustical power output to the mechanical power input.

This is the same definition used in previous studies on two

classical guitars [1] and a piano sound board [4].

2.1 Mechanical power input
The mechanical power input at a frequency, ω, is

measured by taking the cross power spectrum of the force,

F(ω), and the velocity, v(ω), at the same point on the

instrument.

P(ω) = Re[F∗(ω)v(ω)]/2 (1)

The factor of 2 is included in Eq. (1) because the velocity

and force are RMS values. The velocity was measured by

integrating the signal produced by an accelerometer and the

force was both supplied and measured using an instrumented

impact hammer. The impulse provided by the hammer

excited the instrument across a wide range of frequencies.

The upper frequency limit is determined by the hardness of

both the tip of the hammer and the surface being struck. The

instrument is driven at all frequencies up to that limit. Using

an impact hammer allows for the instrument to be excited

across a range of frequencies in a short period of time. This

results in considerably quicker measurements in comparison

with using frequency sweeps or filtered noise excitation.

A disadvantage of using an impact hammer to provide an

excitation is that it is not possible to drive the instrument

at a single frequency. Individual body modes cannot be

excited without driving other modes and the response at any

frequency will be produced by several body modes rather

than single isolated modes.

2.2 Acoustical power output
Measuring the acoustical output power is more

complicated than measuring mechanical power input. One

method for calculating output power is to measure the sound

intensity around the instrument. Sound intensity can be

measured using a single microphone but only if the radiated

sound fields have a known shape. As musical instruments

typically radiate non-spherical sound waves, with dipoles,

quadrupoles and other higher-order components contributing

to the radiated sound, this technique is not applicable. At

distances much greater than the wavelength of the radiated

sound, sound waves may be treated as being planar in nature.

However due to restrictions imposed by the length of audio

wavelengths at low frequencies and also by the size of

anechoic rooms it is not often possible to make use of this

simplification. Sound intensity can also be measured using

a sound intensity probe which measures the sound pressure

and air velocity at the same point. This allows for the study

of the total power output in the near field but does not allow

for measurement of the contributions of monopole, dipole

and other higher-order sources to the power output.

In this paper the acoustical power output was measured

using a spherical-harmonic decomposition algorithm to

determine the source strengths of the different components

that produce the radiated sound. The use of spherical-

harmonic decomposition allows the contribution to the total

power output from monopole, dipole and higher order sound

sources to be determined. This technique has previously

been used to calculate the source strength of the top plate

modes of BR2 at their resonance frequencies [3]. The full

method for spherical-harmonic decomposition can be found

in reference [5] but a brief summary is provided here.
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The radiated sound pressure, p(r, θ, φ), at a single point

in space at a known radius, r, and angles , θ and φ, from a

source [6] is

p(r, θ, φ) =
∑
lm

[almhl(kr) + blmh∗l (kr)]Ylm(θ, φ) (2)

where hl(kr) is a spherical Hankel function, Ylm(θ, φ)
is a spherical harmonic term, k is the wave number, alm is

the outgoing wave coefficient, blm is the incoming wave

coefficient and l & m describe the order of the spherical

harmonic. Measuring the sound pressure on two concentric

spheres, with radii r1 and r2, allows the values of alm and blm

to be calculated by solving the simultaneous equation shown

in Eq. (3).

[
alm

blm

]
=

[
hl(kr1) h∗l (kr1)

hl(kr2) h∗l (kr2)

]−1 [Clm(r1)

Clm(r2)

]
(3)

where Clm is a spherical weighting calculated from the

sound pressure measurements using the spherical-harmonic

decomposition algorithm. The blm values are used to

describe the sound waves moving towards the instrument

and can be reduced by removing external sound sources and

preventing reflection from the room walls. The reflections

were kept to a minimum by making all of the measurements

in an anechoic chamber. By calculating the outgoing

coefficient, alm, the source strength, S ω, can be determined

and the acoustical power output from a monopole source,

Πs, at a single frequency, ω, can be calculated using equation

Eq. (4).

Πs =
ρω2

4πc
|S ω|2 (4)

where ρ is the air density and c is the speed of sound in

air. The equations for output power from dipole and higher

order contributions are shown in reference [7]. The total

power output is calculated by summing the power outputs

produced by the monopole, dipole and other higher order

components. The radiation efficiency, η, is calculated by

dividing the total output power by the input power. It was

found that the quadrupole contribution to the acoustical

power output is negligible so it is omitted from the radiation

efficiency graphs.

Eq. (2) and (3) can be used to calculate the source

strength for any values of l and m providing that a suitable

number of sound pressure measurements are made on the

two concentric measurement spheres. If the instrument is

assumed to produce only monopole sound radiation then a

single measurement point is suitable to describe the sound

pressure as it will be equal in all directions. For dipoles two

microphone locations are required but the orientation of the

dipole must also be known. In this work 36 azimuthal and 9

elevational angles were used to make pressure measurements

at 324 points on two concentric spheres. Making 324 sound

pressure measurements provides many more pressure

values than required for determining the contributions

from monopoles and dipoles. The greater number of

measurements allows for a more accurate determination of

the alm and blm values for l = 0 and l = 1 and also produces

sound pressure fields with a high spatial resolution.

Using Eq. (3) to describe the sound pressure produces

incorrect values of alm when the separation of the

microphones is equal to half of the wavelength of the

radiated sound. The determinant of the matrix containing

the spherical Hankel functions approaches infinity as the

microphone separation approaches an integer multiple of the

half wavelength. This leads to exceptionally large values

for the incoming and outgoing coefficients and the source

strength. This only has an effect near to integer multiples

of the half wavelength and at other frequencies it does not

affect the calculated pressure response or output power.

3 Method
An instrumented, automated impact hammer (PCB

model 086E80) was used to excite the instruments on the

bridge. The velocity response was measured using an

accelerometer (PCB model 352B10) and the sound pressure

was recorded using two 1/2′′ microphones (both B&K type

4165/2619) located on two separate measurement spheres

around the instrument. The hammer strike location and

accelerometer were placed close to one another to produce

a good approximation of input admittance and power

measurements. The sound pressure generated from each

hammer excitation was measured at 324 points on the surface

of the measurement spheres and the corresponding force

and acceleration measurements were saved as well. These

measurements were all undertaken in an anechoic chamber

(dimensions 2m x 2m x 1.5m). The size of the anechoic

chamber limited the radii of the measurement spheres to

0.45m and 0.71m, with the instrument in the centre of the

room and the measurement spheres. The instruments were

suspended from a rotating central column using elastic bands

around their tuning pegs. The microphones were moved

through the nine elevation angles, which were calculated

using Gaussian quadrature, and the instrument was rotated

through the 36 points 10◦ at a time. The recordings from

each strike were made for two seconds at a sampling rate of

44.1 kHz and a fast Fourier transform (FFT) of window size

216 was made of the data. The total time taken to measure

the sound pressure, force and velocity at 324 points was

around 2 hours. This allowed for repeat measurements to be

made on instruments under similar atmospheric conditions.

As in reference [1] any values of η which were greater

than 1 are omitted from the figures. Values of η > 1 are

typically produced by a sudden reduction in the measured

input power rather than an increase in output power.

4 Classical guitar BR2
BR2 was excited on its bridge to the right of the top E

string and the velocity response was measured between the

top B and E strings. Figure 1 shows the total η, monopole

η and dipole η of BR2. The monopole and dipole radiation

efficiencies are defined as the ratio of the monopole and

dipole output powers to the input power respectively. The

labelled points in the figure signify the body modes of BR2,

the nomenclature is that T is a top plate mode and B is a

back plate mode. The first number indicates the number

of anti-nodal regions across the instrument and the second

number indicates the number of anti nodal regions parallel

to the strings. If there are two modes with equal numbers

of anti nodal regions then a subscript is applied to the mode

number. The mode shapes and resonance frequencies for

BR2 are those shown in [3].
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Figure 1: Radiation efficiency measured on BR2 at the top E

string

There are three regions of different η behaviour for BR2

shown in figure 1. The first region is between 80 Hz and 200

Hz, the second is between 200 Hz and 450 Hz and the third

is above 450 Hz. In the first region the radiation efficiency

is less than 0.4 and the peak values of η do not correspond

with the resonance frequencies of the modes. This region is

dominated by monopole power output which is produced by

the two lowest frequency body modes, T (1, 1)1 and T (1, 1)2.

These modes are characterised by motion of a single anti-

nodal area of the lower bout of the guitar. Both of these

modes couple with the enclosed air and the back plate.

Below 200 Hz there are no body modes that radiate like

dipoles but there is a dipole component produced by the

T (1, 1)1 mode below its resonance frequency. The dipole

component is produced by opposite phase motion between

the sound hole and the lower bout of the top plate [8]. The

dipole motion decreases with increasing frequency and

therefore produces only a small amount of dipole acoustical

power below 200 Hz. Body modes are known to produce

a residual response above their resonance frequencies [9]

but they are not excited easily at frequencies below their

resonances. The dipole motion between the air and plate

must therefore be the source of the dipole power output

below 200 Hz rather than any of the higher frequency body

modes. The final top plate mode within this region is the

T (2, 1) mode which has two vibrating regions of equal size

and opposite phase in the lower bout of the instrument. This

mode has a low η value which results from a cancellation

in the radiated sound pressure between the two vibrating

areas and therefore a lower level of sound power output. The

T (2, 1) mode also produces a clear dipole sound field [3].

Dipoles are less efficient radiators than monopoles and this

results in the lower level of total η for this mode.

The second region shows the greatest values of η and the

peak values once again do not correspond with the resonance

frequencies of the body modes. Lai & Burgess [1] observed

values of η > 1 between 300 Hz and 400 Hz which resulted

from a low level of supplied power input. While there are

values of η > 1 within this region it is a frequency range

where BR2 is typically highly efficient which suggests that a

sufficient power input is supplied by the impact hammer.

The peaks in η are clearly rounded unlike the sharper

peaks observed at resonance frequencies in input admittance
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Figure 2: Radiated sound fields from BR2 at 345 Hz and

358 Hz

measurements. The rounded peaks are followed by sharp

decreases in η across the entire frequency range of this

second region. The decreases in η occur when there is a

decrease in the monopole power output but an increase in the

dipole power output. As dipoles are less efficient radiators of

sound this results in an overall decrease in the total radiation

efficiency. For example, the sound fields shown in Figure 2

coincide with a reduction of η from 0.67 to 0.10 between the

two frequencies.

There are two T (1, 2) shaped modes within the second

region, the first has η = 0.08 and the second has η = 0.99.

These two modes have the same-shaped anti-nodal regions

but they have opposite phase characteristics. The lower

anti-nodal regions of the two T (1, 2) modes are located in

the lower bout of the guitar; this is the same area where

the T (1, 1) modes vibrate. The lower frequency T (1, 2)1

mode must therefore be moving with an opposite phase

to the residual response of one of the T (1, 1) modes at its

resonance frequency. The higher frequency T (1, 2)2 mode

will be moving in phase with that T (1, 1) mode.

The third region of radiation efficiency has the lowest

values of radiation efficiency with only 2 peaks showing

η > 0.25 and other frequencies producing η < 0.20. In this

frequency range there are very few modes with a monopole

component and there is a greater level of sound radiation

from higher-order components. The higher-frequency body

modes have a greater number of smaller vibrating areas

so they produce more dipole and other higher order sound

radiation which results in a lower level of power output. The

reduced level of radiation efficiency can also be explained

by the mode shapes of the higher-frequency body modes. At

frequencies above the T (3, 1) mode the increasing number

of small vibrating areas results in one of two behaviours.

If there are an even number of areas then there will be

cancellation in the volume displacement which will reduce

the level of power output. When there are an odd number

of vibrating areas there will be some cancellation but some

residual volume displacement will still occur from the

remaining area. The peak in monopole sound radiation at

707 Hz is close in frequency to the T (5, 1) mode [10]. This

mode can produce monopole sound radiation as there will

be cancellation between four of the vibrating areas leaving

a single small area free to vibrate and produce monopole

sound radiation.

4.1 The effect of the sound hole
Blocking the sound hole of an acoustic guitar prevents a

Helmholtz motion being produced in the body. The lack of a

Helmholtz oscillator motion means that the T (1, 1)1 mode is
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Figure 3: Radiation efficiency measured on BR2 at the top E

string with the sound hole blocked

no longer present and the resonance frequency of the T (1, 1)2

mode is shifted downwards [11]. The effect of the sound hole

on admittance and radiated sound pressure has previously

been measured but its effect on radiation efficiency has not

been studied.

The sound hole of BR2 was blocked using non-porous

foam and the excitation and response measurements were

made at the same location as when the sound hole was

open. Figure 3 shows that blocking the sound hole reduces

the radiation efficiency between 80 Hz and 2000 Hz. The

monopole output power still dominates over the dipole

output below 1000 Hz which suggests that the T (1, 1)2

mode is still able to produce a residual response above its

resonance frequency. When the sound hole is blocked the

separation between the three regions of η is not as clear but

they can still be observed in the same frequency ranges as

when the sound hole is open.

The first region, between 80 Hz and 200 Hz, now

has values of η < 0.15. The T (1, 1)1 mode is no longer

able to vibrate and the lowest frequency body mode is the

T (1, 1)2 mode at 171 Hz. Below this frequency the radiation

efficiency is near to 0 as there are no body modes producing

a response below the T (1, 1)2 mode. The T (2, 1) mode

shows the same value of η when the sound hole is blocked

which suggests that this mode is not affected by the residual

response from either of the two T (1, 1) modes.

The second region of η behaviour shows that the

radiation efficiency has been reduced, with much lower peak

values present. The radiation efficiency is still dominated by

monopole sound radiation which is produced by the T (1, 1)2

mode above its resonance frequency. The two T (1, 2) modes

have the same η characteristics with the lower frequency

mode having a lower radiation efficiency (η = 0.14) than the

higher frequency mode (η = 0.46). As the T (1, 1)1 mode

cannot vibrate and the higher frequency T (1, 2) mode has

a much lower value of η the residual response from the

T (1, 1)1 mode must therefore have an effect on the T (1, 2)2

mode.

In the third region the average value of η is lower than

when the sound hole is open. The most likely cause of this

reduction in radiation efficiency is that the T (1, 1)1 mode

is no longer able to provide a residual response at higher

frequencies and therefore cannot strengthen the power

output.

5 Steel-string guitar X10
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Figure 4: Radiation efficiency measured on X10 at the top E

string

X10 was excited on its bridge to the right of the top E

string and the velocity response was measured between the

top B and E strings. X10 has curved carbon-fibre top and

back plates, a cutaway body shape and an asymmetric bridge

design. A steel truss rod is located within the neck to provide

additional stiffness to the neck. The body mode shapes and

resonance frequencies were found using a 3D scanning laser

vibrometer.

X10 does not show the same three regions of η behaviour

that were seen for BR2 and the greatest values of radiation

efficiency occur between the two T (1, 1) modes. Below 300

Hz the power output is dominated by monopole radiation

as there are no dipole like body modes within this region.

The T (2, 1) mode shows a low efficiency value for X10

in the same way as BR2 due to the similarity of the mode

shape on both instruments. However, at higher frequencies

dipole sources provide a greater contribution to the radiated

sound than the monopole sources. It would therefore appear

that the T (1, 1) modes do not produce a residual effect

across as wide a frequency range for X10 as for BR2. This

can be explained by the fact that steel-string guitars have

a stiffer construction than nylon-string guitars to support

the higher tension steel strings. Any mode will produce

a lower amplitude residual response above its resonance

frequency because of the higher stiffness of the top plates in

comparison to nylon-string guitars. The values of η above

600 Hz are similar to those for BR2 so the steel string guitar

is also much less efficient at higher frequencies than at lower

frequencies.

6 Violin
The violin was excited on the treble side of the bridge

and the impulse was provided in the same direction as the

force would applied by bowing. The velocity response was

measured just below the excitation point.

In figure 5 the radiation efficiency of the violin below

200 Hz is close to 0; this is an expected result as the
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Figure 5: Radiation efficiency measured on the violin at the

treble side of the bridge

lowest-frequency body mode of this particular violin is at

218 Hz. The lowest note on a violin is G3 which has a

fundamental frequency of 196 Hz, so the fundamental will

not radiate sound efficiently. The resonance frequencies

of the body modes of the violin do not correspond with a

particular η characteristic, as seen for BR2 and X10. The

monopole contribution to the power output between 200 Hz

and 700 Hz is much greater than that produced by dipole

components. However between 1000 Hz and 2000 Hz the

radiation efficiency is dominated by dipole contributions.

Above 1000 Hz the mode shapes are more complex and

therefore produce dipole and higher-order radiated sound

fields. The mode shapes for this particular instrument are

not known but the body modes measured on another violin

[12] show that several of the more complex body modes on

violins below 1000 Hz have nodal lines located at the feet of

the bridge. Any excitation made on the bridge will therefore

excite the instrument less than if the feet were located at

an anti-nodal region. These modes would be expected

to be present between 200 Hz and 700 Hz. The strong

monopole component and minimal dipole contribution

within this range suggests that the modes cannot be easily

set into motion and therefore the monopole contribution still

dominates the output power.

7 Conclusions
The low-frequency η is dominated by monopole power

output for all three instruments and the values of η are close

to 0 below the resonance frequency of the lowest-frequency

body mode. The highest values of η occur when the strongest

contribution to the radiated sound is produced by monopole

sound radiation. The resonance frequencies of body modes

do not correspond with a particular η characteristic, instead it

is the shape and phase relationship of the mode that affects its

η value. Higher-frequency body modes produce more dipole

sound radiation than monopole radiation due to the increased

number of smaller vibrating areas.

For both guitars the T (2, 1) mode has a low radiation

efficiency; this is a result of a cancellation in the sound

pressure output between the two vibrating areas on the

lower bout of the instrument. The radiated sound fields

alone cannot be used to determine the level of power output

from the instrument. The monopole and dipole sound fields

measured from BR2 at 345 Hz and 358 Hz both have similar

peak values of sound pressure but the monopole produces

η = 0.67 while the dipole gives η = 0.10.
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