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One measure that a clarinetist uses to judge an instrument is its ability to play in-tune, over the entire
range of the instrument without a large amount of added effort on the players part. Thus, in order
to design the most “playable” clarinet we must know the actual playing frequencies, which depend on
several control parameters including the blowing pressure, reed opening and the input impedance. We
can now rapidly deduce these frequencies (analytically) from the different control parameters and input
impedance curve. Four effects are known to influence the playing frequency and are examined separately
within the analytic formulas: the flow rate due to the reed motion, the reed dynamics, the inharmonicity
of the resonator and the temperature gradient within the clarinet. Numerical simulations have been used
to test the validity of the analytic formulas in the first playing register of the clarinet. These numerical
simulations have the added ability to distinguish in which register the clarinet is playing depending on
the chosen value of reed opening and blowing pressure. This paper will present the “maps” which can be
created from the analytic formulas and numerical simulations which show, over the full range of blowing
pressures and reed openings possible, the expected resulting playing frequencies for a particular clarinet.
These resulting maps could be used by an instrumentalist or manufacturer to better understand the
expected tuning homogeneity over the range of an instrument and perhaps aid in the future design of an
even more “playable” clarinet.

1 Introduction

The current basic design for the clarinet has been
around for quite some time. Small-scale optimizations
and adjustments have been made over the years yet we
are still generally using the same technology to test the
clarinet, human subjective opinion. Though clarinet
testers are professionals, highly experienced players that
have an abundance of knowledge about clarinets, they
still have their own opinions about how their instrument
should feel and sound. How then, can a manufacturer
know if they are creating a great clarinet?

When a clarinetist wants to purchase a new
instrument, they take an average of perhaps four of the
same model clarinet on loan. They test each one in a
variety of situations and decide at that point, which
one works best for them. What if, before the clarinetist
was to test an instrument, they could visually see
the tuning tendencies of each instrument based on the
input parameters of blowing pressure and reed opening?
Industry, as well as the average consumer, could use a
more scientific way of deciding which clarinet fits their
needs. Using analytic formulas which were initially
detailed in the conference paper by Coyle et al. [3],
maps can be created which allow a user to visualize
these tuning tendencies. The maps are specific to
each individual instrument and are created using the
measured input impedance, clarinet geometry and user
chosen reed characteristics.

2 Input Impedance Measurement
Information

The entirety of this work uses a wealth of information
that can be found when studying the input impedance
measurement for the clarinet. The first step in this
research is to find the resonance frequencies of the
clarinet. The resonance frequency is defined as the
location of the measured first impedance peak. This
input impedance measurement does not take into
account the effects due to the mouthpiece, reed and
player but gives us useful information about the body of
the instrument, which includes the effects of tone holes,
bell and geometry of the resonator – hence resonance

frequencies.
This input impedance measurement offers us

not only the resonance frequencies of the particular
instrument in question (ωn), it also provides the
necessary information to calculate values such as the
modal factor Fn (equal to 2 · cl for a perfect cylinder
[9, p. 427]) and Qn, the quality factor of the resonator.
These modal values are extracted from the input
impedance measurements for a given instrument and
used throughout the playing frequency prediction
methods discussed in this work.

3 Analytic Formulas

A clarinet can be described at its simplest, as a
cylinder. This cylinder is assumed to be, acoustically,
closed at the mouth and opened at the bell therefore,
at its base the clarinet can be expected to output
frequencies which follow fn = nπ

4L , where n is odd
[6]. There are numerous mechanisms, however, that
change this frequency spectrum, as with all musical
instruments. There is of course the well known and
studied effects of viscous and thermal losses in the bore
and radiation losses at the bell [6, 9], but more recently
there is research involving gathering analytic formulas
that detail the effects of the following: inharmonicity of
the resonator, flow created by the reed vibrations, the
reed dynamics and a measured temperature gradient
in the instrument. The equations for each of these
effects are written as a function of non-dimensional
control parameters ζ and γ (reed opening and blowing
pressure respectively [9, p. 415]) and are presented
below. For complete derivation and explanation please
see chapter 9 in [9] and [3]. The best way to consider
these frequency altering effects is to transform the
“length corrections” (as discussed in literature [4, 9])
into a difference in frequency between the resonance
(calculated using the instrument’s measured input
impedance peak frequencies) and the playing frequency
(which takes into account all of the loss mechanisms
and frequency changing effects).

• inharmonicity

NcentsInharm =
−100

0.06
· η3

1 + |1 + z|2
(1)
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This effect depends on the heights of the
impedance peaks and the difference between the
second peak frequency (ω3) at the resonance
(taken from the impedance measurements)
and what this value would be in a perfect
cylinder (ω3 = 3 · ω1). Here, η3 = ω3−3ω1

ω1
and

z = Y3−Y1
ζ(3γ−1)

2
√

γ
−Y1

where the terms Yn = 1/Zn are

the admittance peak values.

• reed induced flow

NcentsReedF low =
−100

0.06
· F1∆l0

2G(γ)c
(2)

This effect depends on the modal factor of the
cylinder F1 and the empirical function G(γ) which
is based on the work of Dalmont et al. [4], G(γ) =
1 if γ < 0.5 and G(γ) = 2γ if γ > 0.5. The
term ∆l0 is a known value which describes the
equivalent added volume that can be considered a
length correction, generally around 10 mm [5].

• reed dynamics

NcentsDyn =
−100

0.06
· ζF1

2
√

3

qr
ωr

[1 +
3

4
(γ − γth)] (3)

This effect depends on the reed characteristics
qr and ωr as well as the modal value mentioned
before F1. The term γth is the the pressure
threshold of oscillation which depends on the
reed opening ζ and the heights of the impedance

peaks: γth = 1
3 + 2Re[Y (ω1)]

3
√
3ζ

[9, p. 428]

• temperature gradient

NcentsTemperature =
100

0.06
· 9 · l

4TL
−∆T (4)

The temperature gradient equation is based on
the work done by Noreland [11] and describes a
decreasing linear gradient in the instrument from
the top of the clarinet (near the mouth) to the
bell. The variable l is the location in the clarinet
for a particular fingering and L is the total length
of the instrument.

4 Comparison with Numerical
Simulations

In order to validate these analytic formulas there
have been comparisons with numerical simulations that
also predict the playing frequencies for the clarinet.
Below is a graph that shows the comparison between the
numerical simulations that are described in Guillemain
et al. [8]. These results were previously presented [2]
and are being prepared for publication.

An arbitrary choice for Note was made for these
representative figures. Discussed throughout this paper
are Notes 1 and 17 of the clarinet with tempered
frequencies equaling 146 Hz and 369 Hz respectively
(both in the first register of the clarinet). For Figures 1
and 2 (for color see online version) the line at the top in
magenta is the temperature gradient effect (this is only

Figure 1: Comparison between numerical simulations
(dotted lines) and analytic formula predictions (solid
lines) of the playing frequency of the clarinet. Note 1

(tempered frequency (146 Hz), ζ = 0.3

Figure 2: Comparison between numerical simulations
(dotted lines) and analytic formula predictions (solid

lines) of the playing frequency of the clarinet. Note 17
(tempered frequency 369 Hz), ζ = 0.3

accurate for the analytic formulas since a temperature
dependent sound speed profile was not, at this time,
used in the simulations). For the others, the dotted
lines represent the analytic formula results and the
solid lines represent the numerical simulations. The
x-axis represents the non-dimensional blowing pressure
γ and the y-axis is the difference, in cents, between
the resonance frequency and the playing frequency of
this particular clarinet. The teal line is inharmonicity,
the red is reed dynamics, the green is reed induced
flow and the blue line, at the bottom of the graph is
the combination of the three effects which gives us the
total difference between the resonance frequency of the
clarinet and the playing frequency for this particular
note at one chosen value of ζ = 0.3 and increasing
values of γ.

Considering Figure 1, notice that at low levels of
blowing pressure γ the difference is slight between
the analytic formulas and the numerical simulations
for all of the effects. As blowing pressure increases
the difference grows, mainly in the inharmonicity
curve. This could be due to the fact that as blowing
pressure increases the impedance peaks of the higher
harmonics. This is a situation that can be taken into
account within the numerical simulations (since we can
consider many impedance peaks) however, the analytic
formulas only consider the first two impedance peaks
and therefore neglects information in the higher ones.
This information could be helpful in closing the gap
between the two curves.

Figure 2 shows the comparisons for Note 17, a note
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near the top of the first register and considered to
be in the troublesome ‘Throat-tones’ of the clarinet.
The curves for inhamonicity and the reed flow effects
are extremely close, however in this situation there
is discrepancy concerning the reed dynamics effect.
In fact, the with the combination of ζ = 0.3 and
γ ≤ 0.5 (γ = 0.5 is the beginning of the beating reed
regime) does not allow for playing in this register. This
is an issue within the simulations that is still being
addressed.

Despite the small differences (realizing that,
depending on frequency range, the human hearing
threshold can sense an average difference in tones
around ±8 cents [7, 10] with 100 cents representing
the half-step) the analytic formulas match up well in
trend and values to those predicted by the numerical
simulations. If the temperature effect was added to the
total of the other three effects for the analytic formula
predictions we would have, for this chosen value of
ζ and increasing γ frequency differences (between
resonance and playing frequency) between 0 and 9 cents
for Note 1 and 20 and 30 cents for Note 17. Note 17 lies
in the throat tones, which are usually quite sharp so it
is surprising that we are finding the effects to create
an overall negative frequency shift (or flattening effect)
however recall that in this work we are comparing to
the resonance frequency of the particular clarinet and
not the frequencies of the tempered scale.

4.1 Computation Time Improvements

One of the motivations for studying the effects at
such a basic level (as with the analytic formulas) is
in order to improve computation times. A full scale
run of the numerical simulations: clarinet notes 1 - 36,
γ values 0 - 1 and ζ values 0 - 1 could take upwards
of six full hours on a typical iMac running Matlab
whereas the analytic formulas would take no more than
30 minutes on the same machine, which is a significant
improvement.

Due to the overwhelming decrease in computation
time it is much more useful to implement the analytic
formula predictions when studying these individual
effects and when doing a full scale run of predictions,
for every value of γ and ζ as well as for each note of the
clarinet.

5 Using analytic formulas for
tuning maps

A recent publication by Almeida et al. shows an
example of tuning map that was made by experimental
measurements with an artificial mouth and clarinet
[1]. This work will show similar maps made from the
analytic formulas discussed in this paper. Shown here
are tuning maps for the same Notes 1 and 17 discussed
earlier, for the full range of input parameters ζ and γ.

The color scheme is made so that black represents
no sound and as the parameters lead to more “in-tune”
playing the lighter the colors become, with white
representing the “most in-tune” (with the expected
impedance peak, resonance frequency) at -20 cents for

Note 1 shown in Figure 3 and -35 cents for Note 17
in Figure 4. Notice that the threshold of oscillation
γth is shown clearly in Figure 3 especially as there is a
point in γ below about 0.35 where there is no sound,
despite the choice for ζ. These maps show clearly, in
the white regions, what combination of parameters are
necessary to play the instrument as in-tune as possible.
Recall that the effect of the temperature gradient is not
included here.

Figure 3: Tuning “Map” for Note 1: Difference
between the playing frequency and the resonance
frequency of a clarinet, in cents as a function of

blowing pressure γ and reed opening ζ.

Figure 4: Tuning “Map” for Note 17: Difference
between the playing frequency and the resonance
frequency of a clarinet, in cents as a function of

blowing pressure γ and reed opening ζ.

6 Conclusions and Future Work

The analytic formulas have been shown to be a
quick, relatively accurate method to predict the playing
frequencies for the clarinet given its input impedance
measurement and other user chosen characteristics.
The maps show clearly the playing regions where the
clarinet should play “in-tune” based on the input note,
blowing pressure and reed opening. The hope is that
these maps could help manufacturers and consumers
alike by giving the first concrete scientific measure of a
great clarinet.
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In order to further validate these formulas
there have been measurements with artificial
mouth and experienced musicians alike (using
pressure/force/displacement sensor equipped 3-D
printed mouthpieces) and this data is in the process
of being analyzed. There are also surveys that have
been sent to professional musicians as well as various
university clarinet professors in order to validate the
assumptions and support motivations for this project.
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