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Recently, a graph-based modeling approach of wind instruments has been proposed [1] with the aim of 
computing natural frequencies in a way different from the usual impedance/transmission lines-based way. It can 
be easily applied, even to 2D or 3D networks of waveguides, under the assumption of 1D propagation, having 
complex geometries with branchings and discontinuities, allowing to study in the same framework musical 
instruments with or without toneholes. One important feature of this new approach is that mode matching is 
automatically satisfied from the very beginning of the procedure. In another paper of this conference [2], 
simulation results validated the approach. Further investigations in the same line are presented in [12]. In the 
present work, this model is compared to the classical transmission line model, where the instrument is regarded 
as a series of cylindrical or conical sections. For simple geometries (e.g. a succession of 3 cylindrical parts), the 
inharmonicities of the resonance frequencies are compared. For the transmission line model, an optimization of 
the harmonicity is conducted to obtain optimal dimensions of the resonator. With the graph-based approach, 
“harmonic” resonators are calculated exactly with closed-form expressions. Even if the results show an 
agreement between the two methods, the graph-based method presents the interest to provide all the possible 
“harmonic resonators”, which can constitute an interesting characteristics for example in a design optimization 
process, by targeting a search domain. 

1 Introduction 
The characterization of the acoustical properties of 

resonators according to their geometry is an interesting 
problem in musical acoustics. Several musical instruments, 
like brasses, clarinets, saxophones, have acoustical 
properties and then musical qualities that depend on the 
acoustical resonances of their “bore”, the inner shape of the 
resonator [3]. The prediction of these qualities is very 
important for instrument makers.  

Brass wind instruments are traditionally characterized 
by their acoustic impedance Ze, the transfer function 
between the acoustic flow and the acoustic pressure. The 
input impedance is a very important property for the 
characterization of a resonator: it gives the magnitude of the 
acoustical response to a forced oscillation. The experience 
shows that the frequency of the notes played by an 
instrument is mainly governed by the corresponding 
resonance frequency of the bore, but also by upper 
resonances [4]. For intonation and stability considerations, 
the resonance of the resonator must be close to a harmonic 
series [5]. 

The synthesis of bore geometries can be achieved with 
optimization techniques. Gradient-based optimization or 
genetic algorithms can be implemented to minimize an 
optimization criteria, generally based on the inharmonicity 
of the resonances frequencies [6-7-8-9]. These 
optimizations are able to provide interesting horn profiles 
but they remain subjected to the problem of local minima 
and are very sensitive to the initial solution and to the 
choice of the control parameters of the algorithm. 

The calculation of the input impedance can be achieved 
with the transmission line model [10-11], where the 
instrument is regarded as a series of cylindrical or conical 
sections. A new modeling approach, described in [1], uses a 
description of a wind instrument through its graph in order 
to compute the natural frequencies of the resonator.  

The objective of this paper is to compare the results of 
these two models on very simple geometries, and to show 
their complementarities in determining geometries with 
“harmonic” resonances. 

In section 2, a brief description of the two models used 
for the characterization of the resonances of the bore of a 
resonator is presented: the transmission line model, and the 
graph-based model. Section 3 is dedicated to the results on 
a simple geometry, made of 3 cylindrical parts. Conclusions 
and perspectives are drawn in section 4. 

2 Determination of resonances 
frequencies of resonators 

The bore considered in this study is made of 3 
cylindrical parts of same length (L = 0,1m) (Figure 1), 
defined by their radii ri, and cross section ai ( ai = !ri

2  ; 
i=1 to 3). The wave number is k = 2πf/c, c the sound 
velocity and f the frequency. It is useful to define x=coskL. 
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Figure 1: geometry of a resonator made of 3 cylinders, and 
the corresponding input impedance Ze (magnitude).  

2.1 The TL-model: Input impedance 
calculations 

The input impedance is a very important characteristic 
of a wind instrument. This quantity can be calculated or 
measured [10]. The calculation of the input impedance is 
traditionally made by a theoretical approach based on the 
transmission line modeling (TL-model) [10]. The model 
used for the computation of the input impedance Ze of wind 
instruments is the one-dimensional transmission line 
analogy, where the instrument is approximated by a series 
of truncated cones or cylinders [11] (linear acoustics, 1D, 
taking into account visco-thermal losses). 

The resonance frequencies fi of the resonator are given 
by an extraction of the maxima of the magnitude of the 
impedance (frequencies corresponding to the maximum of 
the module of Ze). 
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2.2 Optimization of the resonator 
Two objective functions C1 and C2 are proposed to 

represent the inharmonicity of the resonator: C1 (Eq.1) is 
the squared error between the resonance frequencies ratio 
(relatively to the first resonance) and the nearest integer 
ratio: 

 C1 = ( fi
f1i!Rf

" # i)2  (1) 

with Rf: set of integer ratio corresponding to the nearest 

integer Rf = i, /i = round( fi
f1
)

!
"
#

$
%
&

; fi: resonance frequency of 

the i-th impedance peak ). 
C2 (Eq.2) is the squared error between the resonance 

frequencies ratio (relatively to the first resonance) and a 
predefined list of integer ratio. 

 C2 = ( fi
f1i!PSf

" # i)2  (2) 

with PSf: set of predefined integer ratios;. 
 
To parameterize the optimization problem, the 

optimization variables x are the sections aj of the j-th 
element. The optimization problem of the harmonicity can 
be stated as follows (Eq. 3):  

 

 x* = argmin.C(X)
x!Rm

 (3) 

In this paper, we consider only the two following cases 
with one optimization variable (x=a3), or two variables 
(x=(a2, a3)). The value of a1 has been fixed to a1 = 1 cm2 as 
only the ratio of the other cross-sections to it are 
meaningful. The optimization procedure has been 
programmed in matlab using the fminsearch function, a 
non-gradient based method that uses the simplex method 
starting at an initial estimate x0. This algorithm gives only 
local minima but can handle discontinuities in the objective 
function. 

2.3 The graph-based model 
Recently [1], a modelling approach was introduced to 

compute efficiently the natural frequencies of wind 
instruments, possibly with toneholes, in the low frequency 
linear approximation. It is based on the description of these 
instruments through a graph, when looking at one 
instrument as a collection of 1D elementary components, 
which, at the present stage are cylinders, connected in some 
way. Then computing the natural frequencies of a wind 
instrument merely amounts to solving the laplacian on the 
corresponding graph that carries all the geometrical 
information (cross-sections, length). This is done thanks to 
a convenient encoding of the structure of the instrument 
into a matrix formulation and a special element by element 
matrix calculus, due to J. Hadamard (see [1] for details). 
Contrary to the usual method through the transmission lines 
formalism, the natural frequencies can be numerically 
computed as the solution of an algebraic eigenvalue 
problem, giving the eigenmodes –actually their value at the 
nodes of the graph- at the same time. Moreover, closed-
form expressions are obtained for the equations to be 
satisfied by the natural frequencies and for the cross-

sections themselves, at least for a low number of cylinders 
that constitute the resonator, as it is exposed in [2]. 

The special case of resonators without toneholes is 
investigated in a deeper way in the companion papers [2-
12], to which we refer for the exposition of the method and 
various numerical results. 

3 Results 
The resonator considered in the study has a simple 

geometry made of 3 cylindrical parts of same length (figure 
1). It is well known from the literature that a resonator 
made of cylindrical parts of same length with the section 

ratios given by an
a1
= n.(n+1) / 2 gives an incomplete 

series of perfectly harmonic resonances (lossless case), the 
harmonics multiple of n+1 being lacking: with 3 cylinders, 
the resonance ratios are in this case (1, 2, 3, 5, 6, 7, 9, 10, 
11…) [13]. 

3.1 TL model: Calculation of the 
inharmonicity 

With fixed values for a1 and a2 (a1 = 1 cm2, a2 = 3 cm2), 
the values of the criteria C1 and C2 were computed for 
different values of a3. For the computation of C2, the 
predefined set of resonance ratios PSf that have been 
considered are (1, 2, 3, 5, 6, 7, 9, 10). 

 The evolution of C1 (resp. C2) is given in Figure 2 
(resp. in Figure 3). 
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Figure 2: evolution of the criteria C1 according to a3 for a 
resonator made of 3 cylinders. 
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Figure 3: evolution of the criteria C2 according to a3 for a 
resonator made of 3 cylinders. 

Whereas C1 has many local minima, C2 is strikingly 
convex. This is due to the fact that C1 is not as constrained 
as C2: with C1, the solution has to fit on any integer 
frequency ratios, whereas it has to fit on a predefined list 
with C2. As a consequence, an optimization process using 
C2 will be much better conditioned than one with C1. As 
expected, the results show that the resonator with a3 ≃ 6.2 
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cm2 (theoretically, without losses a3/a2 = 3*4/2=6) gets near 
zero values for the criteria C1 or C2, corresponding to 
perfectly harmonic resonances (1, 2, 3, 5, 6, 7, 9, 10) (given 
that losses are taken into account in the TL-model, the 
harmonic solution is not exactly equal to a3 = 6 cm2). 

The results show also that only one particular value of 
a3 allows a fitting of the resonances on the predefined ratios 
(1, 2, 3, 5, 6, 7, 9, 10). The criterion C2 is convex in the 
domain of variation of a3.  

When the criterion considered is C1, we can see on 
figure 2 that the inharmonicity is lower than for C2, given 
that the resonances have to fit on the nearest integer ratio, 
not on a predefined list of ratios. But except the solution a3 
≃ 6.2 cm2, there is no other perfectly harmonic solution 
according to C1 for the considered range of a3. 

With a fixed value for a1 (a1 = 1 cm2), the values of the 
criteria C1 and C2 were computed for different values of  
(a2, a3). The evolution of C1 (resp. C2) is given in Figure 4 
(resp. in Figure 5 and Figure 6, with a logarithmic scale). 
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Figure 4: contour plot of the criteria C1 according to (a2, a3) 
for a resonator made of 3 cylinders. 
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Figure 5: contour plot of the criteria C2 according to (a2, a3) 
for a resonator made of 3 cylinders. 
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Figure 6: logarithmic contour plot of the criteria C2 
according to (a2, a3) for a resonator made of 3 cylinders. 

Again, the resonator with a2 ≃ 3 cm2 and a3 ≃ 6 cm2 
obtains perfectly harmonic resonances. But surprisingly, we 
observe on figure 4 that other combinations of values for a2 
and a3 can produce almost harmonic resonances. For the 
criteria C2, the response surface is very flat in the vicinity 
of the optimum. A logarithmic scale, represented figure 6, 
allows an easier visualization of the differences. 

 

3.2 TL model: Optimization of the 
inharmonicity 

In the case of the optimization of the inharmonicity 
according to a single variable, a3, (a1 = 1 cm2, a2 = 3 cm2), 
the results given by the fminsearch function for the two 
objective C1 and C2 are presented in Table 1. 

Table 1: results of the optimizations for one variable a3. 

Objective 
min. 

Starting point 
x0 

Optimum x* Value of the 
criterion 

C(x*) 
C1 a3

0
 = 3.14  a3

opt
 = 3.41 0.61 

C1 a3
0

 = 4  a3
opt

 = 4.14  0.55 
C1 a3

0
 = 5  a3

opt
 = 6.29  2e-3 

    
C2 a3

0
 = 3.14  a3

opt
 = 6.32  1.19e-3 

C2 a3
0

 = 4  a3
opt

 = 6.32  1.19e-3 
 

For C1, the results show that the optimum is strongly 
dependent on the starting point of the algorithm. This is due 
to the multiple local minima of C1, presented in figure 2. Of 
course, more advances optimization strategies could be 
proposed to overcome this problem, but it will always 
remain a difficulty for large design space. 

For C2, the objective function being convex in the 
domain of study (figure 3), the convergence to the global 
minimum is insured whatever the starting point. 

In the case of the optimization of the inharmonicity 
according to two variables, (a2, a3), (a1 = 1 cm2), the results 
are given in Table 2. 
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Table 2: results of the optimization for two variables (a2, 
a3). 

Objective 
min. 

Starting point 
x0 

Optimum x* Value of the 
criterion 

C(x*) 
C1 a2

0
 = 3.14 

a3
0

 = 3.14 
a2

opt
 = 3.12 

a3
opt

 = 3.44 
0.61 

C1 a2
0

 = 6 
a3

0
 = 3 

a2
opt

 = 6.86 
a3

opt
 = 2.91 

0.077 

C1 a2
0

 = 2.5 
a3

0
 = 5 

a2
opt

 = 2.87 
a3

opt
 = 6.22 

1.9e-2 

    
C2 a2

0
 = 3.14 

a3
0

 = 3.14 
a2

opt
 = 2.89 

a3
opt

 = 6.23 
1.8e-3 

C2 a2
0

 = 6 
a3

0
 = 3 

a2
opt

 = 2.89 
a3

opt
 = 6.22 

1.8e-3 

C2 a2
0

 = 2.5 
a3

0
 = 5 

a2
opt

 = 2.71 
a3

opt
 = 6.09 

2.5e-3 

 
For C1, the results are strongly dependent on the starting 

point of the algorithm, due to the multiple local minima of 
C1, presented in figure 4.  

For C2, the objective function being convex in the 
domain of study (figure 3), the convergence to the global 
minimum is insured whatever the starting point. 
 

3.3 Graph-based model 
Following the general methodology of [1], closed-form 

expressions for solving the problem of harmonically related 
natural frequencies of piecewise cylindrical resonators are 
presented in [2]. The main one is the nonlinear equation 
that these frequencies must satisfy. In [12], first numerical 
results based on these expressions are presented. For the 
sake of completeness, the expression for the case of a 
resonator with three cylinders is recalled here (Eq. 4): 

 

x2 = a1a2 + a1a3 + a2
2

(a1 + a2 )(a2 + a3)
  (4) 

 
from which we deduce the solution a3 once the 

series of resonances is fixed through x (Eq 5.): 
 

a3 =
a2 (a1 + a2 )(1! x

2 )
(a1 + a2 )x

2 ! a1
  (5) 

 
Among these solutions, the only physically relevant 

are those satisfying (Eq. 6): 
 

a2 >
a1(1! x

2 )
x2

    (6) 

 
The relation between a2 and a3 for a harmonic resonator 

for the ratios (1, 2, 3, 5, 6, 7, 9, 10…) is given figure 3. 
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Figure 7: relation between a2 and a3 for harmonic 
resonances for the ratios (1, 2, 3, 5, 6, 7, 9, 10). 
 

In figure 5, the curve of a3 as a function of a2, for a1 =1 
and kL=π/4 is shown. Its behavior is typical of piecewise 
cylindrical resonators with three cylinders [12]. Notice the 
two integer solutions: { a2 =3, a3 =6} and { a2 =2, a3 =6} 
and the fact that there is a continuum of solutions: for  
kL= π /4 and for all the points { a2, a3} on this curve, one 
gets a harmonic resonator with the prespecified series kL of 
natural frequencies. For any choice of kL such that kL/ π is 
a rational number, one will get with a similar curve a whole 
family of resonators with the prescribed series of harmonic 
resonances [12]. Thus one has a way to design precisely a 
bore for which a predetermined set of resonances are 
chosen and as a consequence to localize the good solutions 
for harmonic resonators for example in the design process 
of the bore through optimization. For example, some 
resonators can be much more sensitive to variations in the 
cross-sections than others, although they have the same 
series of resonances. Thus it is important to have a mean to 
characterize the robustness of the solutions.  
 

A very important observation concerning figure 6 and 7 
is that the shape of the minimal value of the criterion C2 is 
in perfect agreement (up to the thermal losses) with the 
curve a3 as a function of a2 given by the graph method. 

 
We notice finally that both methods give results that are 

in agreement and complementary: 
- the TL-model gives the value of the criterion in the 

whole design space (a2, a3), in a numerical form 
(no closed-form of optimal solutions) 

- the graph model limits to the perfectly harmonic 
designs, but gives the explicit relationship 
between the design variables 

 
This simple situation where 2D graphs can be plotted 

allow us to check each approach against the other. In the 
more general case (more than 3 cylinders), as we cannot 
plot higher dimensional graphs, both methods can be used 
in conjunction. The graph method can be used to localize 
first where solutions should be searched after, in order to 
start an optimization process in a safer way. 
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6 Conclusion 
In the design process of the bore of wind instruments, 

optimization methods often show numerous local maxima 
in the criterion to be optimized. This asks for constraining 
the optimization problem sufficiently. In the present work, 
one has seen that using a different modeling approach for 
the bore and its subsequent closed-form expressions, the 
starting point of involved iterative procedures can be 
targeted precisely. Whereas the graph-based modeling 
approach deals stricto sensu with exactly computing a 
piecewise cylindrical bore to have harmonically related 
natural frequencies, an optimization process is able to take 
into account many different constraints (ergonomics or 
manufacturing constraints on the bore) imposed by the 
design.  

In that respect, parallel work has shown that the graph-
based modeling approach seems able to furnish information 
about the sensitivity of some bore shapes, within a family 
of bores having a prescribed series of harmonic natural 
frequencies. The conjunction of both approaches opens 
perspectives concerning a robust regularization of the 
inharmonicity criterion. Thus their joint use can be valuable 
and is promising. This has to be investigated in a deeper 
way. 
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