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Although they have been widely studied for years, some aspects of the behaviour of flute-like musical instruments
remain poorly understood. The study of a physical model of the instrument has demonstrated its interest in the
understanding of various phenomena, such as the hysteresis related to regime changes or the variations of the
frequency with the blowing pressure. As it involves both nonlinear and delayed terms, an indepth study of the
state of the art flute model requires specific numerical methods, which are often computationally expensive. The
simplification of the model through its linearisation around a non-oscillating trivial solution is thus particularly
interesting, due to the simplicity of the calculations. The information provided by such an analysis in terms of
oscillation frequency or oscillation thresholds of the different periodic solutions has been highlighted in previous
work . Surprisingly enough, the present study shows that this simple linear analysis provides information about the
stability zones of the different periodic solutions (i.e. the different registers), and allows to predict, in some cases,
the register resulting from a transient of the mouth pressure. Such information can be obtained without solving the
nonlinear equations and without computing the steady-state oscillations of the model.

1 Introduction
Various studies have highlighted the complex behaviour

of flute-like instruments, and the valuable information
arising from the study of a physical model of this kind of
instruments [2, 5, 3]. However, even the simplest model
involves both nonlinear, non smooth and delayed terms
[1]. These particular features make both its time-domain
integration and its analysis in terms of a (neutral) nonlinear
dynamical system particularly complex, and costly in terms
of computation time [3]. The drastic reduction of the model,
through its linearisation around a trivial non oscillating (i.e.
static) solution thus presents an obvious interest, due to the
simplicity of calculations. It is theoretically known that this
linear analysis of the model provides information about the
stability properties of the considered static solution, and
thus, in some cases, about the oscillation threshold (see for
example [10]). Moreover, some studies have stressed the
ability of this method to provide a rough approximation of
the oscillation frequency and regime change thresholds [2].
This paper focuses on the information provided by the

linear analysis of the state-of-the-art physical model for
flute-like instruments in the case of attack transients of
the mouth pressure. Such attack transients correspond to
strongly non stationnary evolutions of the parameters, and
to oscillations outside the vinicity of the static solution
involved in the linearisation. As the linearisation involves
hypothesis of both quasistatic variations of the parameters,
and small perturbations around the static solution, attack
transients fall, at first sight, outside the scope of the
considered linear analysis. However, due to their musical
importance and to the fact that they are directly controlled
by the instrumentalist, their study is particularly interesting.
The state-of-the-art physical model for flute-like

instruments is first presented in section 2, followed by
details on its linearisation and analysis in section 3. Finally,
section 4 presents the comparison between the results of
linear analysis and time-domain simulations of the complete
nonlinear model. Information provided by the linear analysis
are discussed in terms of oscillation regime reached during
an attack transient, stability ranges of the different periodic
regimes, and duration and spectral nature of the transients.

2 Model for flute-like instruments
2.1 General mechanism of sound production
Although transverse flutes, recorders, or organ pipes

present important differences, the general mechanism of
sound production can be, in all cases, described as follows

[1]. When the musician blows in the instrument, a naturally
unstable jet is created at the channel exit of height h (see
figure 1). This jet oscillates around the sharp edge called
labium, which constitutes the exciter, providing energy to
the resonator, formed by the air column contained in the
pipe. The acoustic field thus created in the resonator perturbs
in turn the jet at the channel exit. As the jet is naturally
unstable, this perturbation is amplified while convected
along the jet of lengthW from the channel exit to the labium,
thus sustaining the oscillations of the jet around the labium.
This auto-oscillation process can be represented through a
feedback loop system shown in figure 2.

Figure 1: Recorder section and simplified representation of
its exciter, constituted by the oscillation of an unstable air

jet around a sharp edge called labium.

Figure 2: Basic modeling of sound production mechanism
in flute-like instruments, as a feedback loop system [1].

2.2 State-of-the-art physical modeling
This mechanism of sound production is modeled through

a set of equations, each of them being related to an element of
the feedback loop system sketched in figure 2. The principal
phenomena and the equations associated to each of these
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elements are briefly recalled in this section; for more details
on the complete model, the reader is referred to [1, 2, 3].
Following the empirical model proposed by de la Cuadra

[5], the initial transversal perturbation η0(t) of the jet is
provided at the channel exit by the acoustic velocity vac(t).
Rayleigh’s theory is applied to describe in a simplified way
the convection and amplification of this perturbation along
the jet, leading to the transversal displacement at the labium:

η(t) = η0(t − τ)eαiW =
h
U j
vac(t − τ)eαiW , (1)

with Uj the centerline velocity of the unstable jet (directly
related to the pressure Pmouth in the musician’s mouth,
through the Bernoulli relation), and αi ≈ 0.4

h an empirical
amplification coefficient [5]. The delay τ, due to the
convection duration, is related both to the distance W,
and to the convection velocity cv of the perturbation, with
0.3Uj < cv < 0.5Uj [4, 5]. It is worth noting that τ is
directly related to both the jet velocity Uj hence to the mouth
pressure Pmouth (the higher Pmouth, the smaller the delay τ).
The oscillation of the jet induces an alternative flow

injection on each side of the labium (inside and outside the
pipe). Following the jet-drive model [6], these two localised
flow sources in phase opposition, separated by a distance δd,
constitute a dipolar pressure source Δpsrc(t).
Moreover, the phenomenon of vortex shedding at the

labium [7] gives rise to energy loss modeled through an
additional term Δplos(t) in the source equation.
The pressure source Δp(t) = Δpsrc(t) + Δplos(t) exciting

the resonator is finally written as:

Δp(t) =
ρδdbU j

W
d
dt

[
tanh
(
η(t) − y0
b

)]
−
ρ

2

(
vac(t)
αvc

)2
sgn((vac(t)),

(2)
with ρ the air density, b the half width of the Bickley profile
of the jet, y0 the offset between the labium and the jet
centerline (see figure 1), sgn the sign function, and where
αvc represents the vena contracta contraction coefficient,
estimated for a sharp edge at 0.6.
The acoustical frequency response of the air column to

the pressure source is given by its admittance Y(ω) = Vac(ω)
ΔP(ω) ,

which is modelled through a modal decomposition:

Vac(ω) =
⎡⎢⎢⎢⎢⎢⎣ a0
jωb0 + c0

+

p∑
k=1

ak jω
ω2k − ω

2 + jωωkQk

⎤⎥⎥⎥⎥⎥⎦ΔP(ω), (3)

with ω the pulsation, ak, ωk and Qk the modal amplitude,
the resonance pulsation and the quality factor of the kth
resonance mode (respectively), and a0, b0 and c0 the
coefficients of the so-called uniform mode at zero-frequency.
Such coefficients are estimated, for different fingerings,
from the geometrical dimensions of a Bressan Zen-On alto
recorder, using the software WIAT [8].
The model is finally defined by equations 1, 2, and 3.

For sake of numerical conditionning, the resulting system is
made dimensionless, defining the following variables: t̃ =
ω1t and ṽ(t̃) = heαiW

bU j vac(t) (see [3] for more details).

3 Linearisation around the equilibrium
The model described in section 2 can be rewritten as a

neutral delayed nonlinear dynamical system [2, 3]:

ẋ(t̃) = f (x(t̃), x(t̃ − τ̃), ẋ(t̃ − τ̃), λ). (4)

where λ is the set of parameters, and x the vector of state
variables, constituted by the projections of ṽ(t̃) on each mode
of the admittance (see equation 3), and their first derivative
with respect to time (see [3] for more details).
Due to its neutral delayed nature, the complete resolution

and analysis of the model is particularly complex [9, 3].
Especially, time-domain simulations require very high
sampling frequency (typically 1 MHz) to provide accurate
results, and are thus costly in terms of computation time.
The study of the corresponding linearised system around a
non oscillating solution is thus particularly interesting, due
to the simplicity of the calculations.
The model studied here has a trivial non oscillating

solution f (0, 0, 0) = 0. Linearisation of system 4 around this
static solution leads to the following equation:

ẋ(t̃) = A1x(t̃) + A2x(t̃ − τ̃) + A3ẋ(t̃ − τ̃), (5)

where Ai denotes the partial derivative of vector function
f with respect to its ith argument, evaluated at the static
solution 0 (see for example [10]). In this expression,
terms A2 and A3 are directly related to the neutral nature
of the system. In a more classical system of ordinary
differential equations ẋ(t) = f (x(t), λ), modeling for example
reed instruments, brass instruments and bowed string
instruments, A2 = A3 = 0.
The stability properties of the static solution are then
determined by the roots κ of the characteristic equation
associated to equation 5:

det(κI − A1 − A2e−κτ̃ − A3κe−κτ̃) = 0, (6)

where I represents the identity matrix [10]. In the present
case, this equation is solved with the software DDE-Biftool
and its extension for neutral dynamical systems [11, 9, 12].
The considered static solution remains locally stable as long
as all the roots have negative real parts. Conversely, if at least
one of the roots has a positive real part, any small disturbance
is amplified with time, and the static solution is thus locally
unstable. This analysis thus allows to determine the Hopf
bifurcation points at which the real parts of two complex
conjugate roots κ become positive. Such a Hopf bifurcation
corresponds to the birth of a periodic solution (and thus to
an oscillation threshold), whose frequency at this threshold
is driven by the imaginary part of the considered roots. Each
periodic solution is thus associated to a given instability of
the static solution.
As an example, figure 3 represents real parts of the roots

of equation 6, with respect to the dimensionless delay τ̃
(along this paper, the roots are represented with respect to
τ̃ for sake of readibility and consistency with the numerical
resolution method). The modal coefficients correspond to
the G4 fingering of an alto recorder. It highlights that for the
range of τ̃ represented, the static solution remains unstable.
More precisely, two different instabilities (corresponding to
two periodic solutions) exist for 0.98 < τ̃ < 1.3. The first
instability disapears for τ̃ slightly below 0.2. According to
the imaginary part of the root associated to this instability,
it corresponds to a periodic regime at a frequency close to
the first resonance frequency, the so-called first register. In
the same way, the second instability (corresponding to the
second register) disapears around τ̃ = 0.1 . At τ̃ = 0.98,
τ̃ = 0.7 and τ̃ = 0.55, three additional periodic solutions
emerge, which respectively correspond to the third, the
fourth and the fifth registers, and die out at τ̃ = 0.05,
τ̃ = 0.04 and τ̃ = 0.02.
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In addition to the prediction of oscillation thresholds
and oscillation frequency at each of these thresholds, some
previous studies have highlighted that such a linear analysis
can provide a rough approximation of both the regime
change thresholds and the oscillation frequency far from
oscillation thresholds (through the imaginary parts of the
different roots, not represented here) [2]. The present study
focuses on the information provided by this linear analysis
in the case of attack transients of the mouth pressure.

4 Results: Linear analysis and attack
transients
The results of linear analysis are compared to time-

domain simulations of the complete nonlinear model. Since
attack transients correspond both to highly non stationary
evolutions of the parameters, and to oscillations outside the
vinicity of the static solution around which the system is
linearised (equation 5), nothing guarantees that this method
can provide valuable information.

4.1 Pmouth steps : arrival oscillation regime
For modal coefficients corresponding to the G4 fingering

of an alto recorder, different steps of the mouth pressure
between a low value of Pmouth (for which the static solution
is stable) and a variable target value Pt of the mouth pressure
are carried out through time domain simulations of the
model presented in section 2. A Runge-Kutta solver of order
3, implemented in Matlab - Simulink, has been used. Figure
4 represents, with respect to time, the mouth pressure, the
acoustic velocity vac(t) and the oscillation frequency, for
two different values of Pt (Pt = 300 Pa and Pt = 400 Pa).
The comparison of the fundamental frequencies highlights
that the step with Pt = 300 Pa leads to oscillation on the
first register, whereas the step with Pt = 400 Pa leads to
oscillation on the second register.
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Figure 3: G4 fingering: real parts of the roots κ (linearised
model), with respect to the dimensionless delay τ̃. Each
(positive) branch of�(κ) corresponds to an instability of
the static solution, related to a periodic solution. The cross
and the circle represent the largest value�(κ), for values of
Pt (300 Pa and 400 Pa) leading respectively in time-domain

simulation to the first and the second register.

Examining the roots κ at these two points suggests that
the arrival regime could be driven by the root with the largest
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Figure 4: Time-domain simulation of the complete model,
for two steps of Pmouth with a target pressure Pt = 300 Pa
(left) and Pt = 400 Pa (right). Representation of the mouth
pressure (high), the acoustic velocity vac(t) (middle) and the
fundamental frequency (bottom), with respect to time.

real part. In figure 3, which represents roots κ with respect
to τ̃, the blue cross and the red circle highlight the root with
the largest real part, respectively for the two values of the
dimensionless delay τ̃ corresponding to Pt = 300 Pa and Pt
= 400 Pa. In that case, the first register is obtained when the
root with the largest real part corresponds to the instability
giving rise to the first register, whereas the second register is
obtained when the root with the largest real part is related to
the existence of the second register.
This assumption is confirmed by the realisation of

different steps of the mouth pressure on a wider range of Pt:
as highlighted in figure 5, which represents the same kind of
data as figure 3, the oscillation regime reached corresponds,
in all the tested cases, to the register related to the root with
the largest real part.
Through a linear analysis of the model, it is thus possible

to predict the range of mouth pressure of the attacks
(controlled by the musician) leading to each oscillation
regime. Thus, it is possible to bring out some characteristics
of a given fingering, such as for example the inhability (or at
least the difficulty) to attack on a specific register.

4.2 Stability ranges of the periodic regimes
According to these first results, the analysis of the

system linearised around its static solution allows to predict
the oscillation regime resulting from a step of the mouth
pressure. It thus suggests that the periodic regime related to
a given instability of the static solution is necessary stable
as long as the associated root is the largest one, in terms of
real part. The different periodic solutions branches of the
complete model and their stability properties are calculated
in the software DDE-Biftool, as described in [3]. Figure
6 represents the roots κ computed for the G4 fingering as
a function of τ̃ (already represented in figures 3 and 5),
superimposed with the range of stability of the different
corresponding periodic solution branches (i.e. the different
registers). It highlights that for each of the five registers, if
the associated root κ is the one with largest real part, the
regime is stable. However the reciprocal is false.
If it does not allow to predict the precise range of stability

of a given periodic regime, we conjecture that this analysis
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representation of the observed oscillation regime as function
of the value τ̃c corresponding to the step amplitude Pt.
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nevertheless provides a minimal range of stability for each
periodic regime.

4.3 Duration and type of the transients
As real parts of roots κ characterise the amplification,

with respect to time, of small disturbances superimposed
on the static solution, it is expected that the duration of
the transient of vac(t) depends on the real part of the root
associated to the arrival regime (see for example [10]). For
simulations of different steps of the mouth pressure, the
duration of the transient of vac(t) has been compared to the
largest real part of the roots κ. The duration of the transient
is defined as the time between the instant at which the step of
Pmouth occurs and the time at which the oscillation amplitude
of vac(t) differs by less than 10 percent from the steady-state
oscillation amplitude. The results, represented in figure 7 for
modal coefficients corresponding to the A4 fingering of an
alto recorder, show good agreement with the theory, in the

sense that the larger the real part of the root, the shorter is
the transient. However, two specific points, for�(κ) = 0.05
and�(κ) = 0.07, show unexpected behaviours.
A more careful study of this two points highlights

particularly interesting phenomenon: the (long) transients
of the temporal signals vac(t), represented in windows
(a) and (b) in figure 7, are in both cases constituted by a
quasiperiodic regime. Moreover, examining the real parts
of roots κ at these points shows, as highlighted in window
(c) in figure 7, that in both cases, two ”branches” of roots
(corresponding to two different periodic solutions) intersect.
Case (a) corresponds to the intersection between the branch
related to the first register and the branch related to the
second register. A spectral analysis of the quasiperiodic
transient observed at this point highlights that its two base
frequencies correspond to those of the 1st and 2nd registers.
Similarly, case (b) is located at the intersection point

between the roots leading respectively to the 2nd and the 4th
register (see (c)). As for the case (a), the spectral analysis
of the quasiperiodic transient allows to identify the two base
frequencies as frequencies of the 2nd and 4th registers.
At these points, it thus seems that the system ”hesitates”

between the two instabilities (leading to two different
registers). As each of these instabilities involves a particular
frequency, it results in a long quasiperiodic transient,
constituted by these two frequencies.
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Figure 7: Time-domain simulation of mouth pressure steps,
for the A4 fingering. Transient duration of vac with respect
to the largest value�(κ) at the value of τ̃c corresponding to
the amplitude Pt of the step. (a) and (b): temporal signal vac
with respect to time for the two pathological points. (c):
�(κ) of the linearised model, with respect to τ̃.

It results that the computation of the roots κ not only
provides an estimation of the relative durations of the
transients for different values of the mouth pressure (the
transient will all the shorter than the real part of the root
is large), but also, in some cases, information about the
nature of the transient. This result suggests that it would be
possible to access, through a comparison of the real parts of
the different roots, an estimation of the spectral content of
the transient of vac. However, this remains to be confirmed.

4.4 Influence of the rise time of Pmouth
Previous sections have bring out the interesting

connections between the behaviour of the complete
(nonlinear) model and the roots of the linearised system, in
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the case of attack transients formed by steps of the mouth
pressure. However, one can question the validity of these
results in the case of more realistic transients. In a study
focusing on the analysis of attack transients realised by
recorder players, Garcı́a [13] noted rise times of the blowing
pressure between 10ms and 40ms.
To test the influence of the attack time, same kind of

simulations as in section 4.1 have been achieved with linearly
increasing attack transients of Pmouth, with rise time from
10ms to 40ms. If such profile of Pmouth remains a rough
representation of real attack transients (mainly because of the
linear increase during the attack), they are nevertheless less
caricatural than the steps previously studied.
As in section 4.1, figure 8 presents the comparison

between the oscillation regime resulting from attack
transients with a rise time of 40ms (with different values
of the target pressure) and real parts of the roots of the
linearised system. As previously, it highlights that the
arrival oscillation regime is the register resulting from the
instability of the static solution associated to the root with
the largest real part, and that this arrival regime can thus be
predicted by the simple examination of the roots κ. Same
results have been observed for different values of the rise
time of Pmouth between 0ms and 40ms. If the influence of the
attack transient profile remains to be studied, these results
already argue in favor of the validity of this conjecture in the
case of more realistic transients attack.
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Figure 8: Lines: real parts of roots κ (linearised model), as
function of τ̃, for the G4 fingering. Markers: time-domain
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representation of the arrival register as function of the value
τ̃c corresponding to the step amplitude Pt.

5 Conclusion
This study has presented some comparisons between the

analysis of the linearised state-of-the-art model for flutes,
and time-domain simulations of attack transients of the
complete nonlinear model. Theoretically, attack transients
fall totally out of the scope of linear analysis around the static
solution. However, very surprisingly, it appears that the
roots computed from the linearised model provide valuable
information on attack transients of the complete nonlinear
model. Indeed, the study of the real parts of the roots is
enough to predict the oscillation regime resulting from a
step of the mouth pressure, a minimal range of stability
of each periodic regime, and in some cases, a qualitative
estimation of the relative transients duration and spectral

content. It is interesting to note that these conjectures
seem to remain valid for rise times of the mouth pressure
corresponding to those observed on musicians. These results
thus allow, in some cases, to predict the model behaviour
without solving the complete model, ans thus considerabily
reducing the computation time and complexity. To the
author knowledge, these surprising results have never been
observed before, neither on neutral dynamical systems,
nor on simpler ordinary differential systems (modelling
for example reed, brass and bowed-string instruments).
In order to test the validity of these conjectures for more
realistic attack transients, it would be interesting to study, in
addition to the rise time of the mouth pressure, the influence
of its temporal profile. Indeed, only linear profiles of the
mouth pressure have been considered here. Moreover, since
this study suggests the existence of a relation between the
quasiperiodic nature of a transient and the roots of the
linearised model, it would be intereseting to explore in more
depth the ability of the method to predict the spectral content
of the attack transients.
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