
Design of Algebraic Observers for Brass Instruments
S. Boisgerault and B. D’Andréa-Novel
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Physical high-fidelity models of brass instruments are available in the literature, but controlling them
to obtain a proper musical restitution is still a challenge. The inversion of the model from a unique
observation, namely the sound produced by the instrument, is therefore a natural way to deal with this
situation. The observer design problem consisting in an estimation of the vibro-acoustic state of the
system is essential for that purpose.
The observer design problem was addressed in [4] for an elementary brass system using elastic player
lips and straight pipe models. A neutral system representation of the system and Lyapunov methods
were used ; a proof of the observer stability was obtained and simulations have demonstrated that the
estimation method is robust in the presence of noisy measurements.
However no adaptation to the noise power was performed, leading to a rate of convergence of the observer
that was suboptimal. Moreover, as the observer dynamics was related to the uncoupled lips dynamics,
the response could be slow and oscillatory.
Using a representation of the same brass model as a delay-differential algebraic system [3], together with a
sensitivity analysis and Kalman filter theory, we address these limitations through a new observer design
resulting in a substantial improvement of the observer rate of convergence.

1 Introduction

This paper addresses the problem of elaborating a
state observer for a simplified brass instrument model,
assuming that the output is the measured pressure at
the end of the pipe. The observer is based on delay-
differential-algebraic-equations (DDAE) and tools from
Kalman filter theory in the case of correlated noises
(see [5]).

Section 2 introduces a simplified model for the
instrument. The existence and computation of the
solutions of the model in DDAE form is presented
in section 3. Section 4 is dedicated to the design of
our observer. First simulation results are presented
which validate our approach. Finally in section 5 the
sensitivity analysis from the measured output to the
position of the lip is detailed.

2 Modelling

A simplified brass instrument can be described by:

• a valve, the aperture of which is modulated by
a single solid, namely a lip, characterized by its
mass, stiffness and damping. The bottom of the
lip is moving in the vertical direction and located
by its height ξ(t),

• a quasi-steady jet which applies a force on the
valve,

• an acoustic pipe, the vibrations of which are set
in motion by the jet.

The reader can refer to [4] for more details.

2.1 Acoustic Tube and Jet Dynamics

Let pm(t) be the pressure in the musician’s mouth at
time t (all pressures considered here are relative to the
atmospheric pressure). We use the convention that
values that depend on a time variable t and a space
variable x are implicitly evaluated at the origin (x = 0)
when the space variable is not specified.

Let p(t, x) be the acoustic pressure in the resonator
at time t and point x. This pressure is a superposition
of forward and backward pressure waves p+(t, x) and

p−(t, x): at any time and location in the tube, we have
p(t, x) = p+(t, x) + p−(t, x) and in particular, at the
origin

p(t) = p+(t) + p−(t). (1)

When the lip is open – that is ξ(t) > 0 – a simple
modelling based on the Bernoulli equation leads to the
following relation between pressures

µ

2

(
p+(t)− p−(t)

ξ(t)

)2

= pm(t)− p+(t)− p−(t). (2)

We refer to [4] for the derivation of this equation from
the modelling assumptions and the expression of the
constant µ in terms of the physical parameters of the
system.

At the other end of the tube, we assume that
pressure waves are reflected by a constant, frequency-
independent, parameter λ ∈ (−1,+1). Consequently,
if τ denotes the time for the sound to travel from the
tube origin to the extremity and back, ` the length of
the tube and c the celerity of the waves, we have

p−(t) = λp+(t− τ) with τ =
2`

c
. (3)

Given that p+(t, x) and p−(t, x) are progressive waves,

p+(t, x) = p+(t−x/c) and p−(t, x) = p−(t+x/c). (4)

The measured output of the system is the sound
radiated at the end of the instrument, that is:

y(t) = p(t, `) = p+(t− `/c) + p−(t+ `/c) (5)

or, using relation (3)

y(t) = (1 + λ)p+(t− τ/2). (6)

2.2 Lip Dynamics

Lips are modelled as solid masses subject to pressure,
friction and elastic forces. Spring-damper systems are
classically described by linear second-order differential
equations under the canonical representation
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ξ̈ + 2ζωξ̇ + ω2(ξ − ξe) = ω2f (7)

where ω is the natural frequency, ζ the damping ratio
and ξe the equilibrium position. The system input f is
a linear combination of side pressure (difference) and jet
pressure:

f = γs(pm − p) + γjp. (8)

The natural frequency ω and the damping ratio ζ in (7)
are related to the upper lip mass m, damping a and
stiffness k by ω =

√
k/m and ζ = a/(2

√
km). The

side pressure gain and jet pressure gain γs and γj are
deduced from geometric parameters of the upper lip –
the angle of incidence θ and side and bottom area As

and Ab – with γs = (As sin θ)/k and γj = Ab/k.
Remark. In the scope of this article, only a single-

lip model, with a lip that is always open is considered.
The open-closed model behavior is studied in [4] and
more refined models, such as two-dimensional lip models
(see e.g. [1]) used for trumpet sound synthesis could also
be considered.

3 Structure of the Dynamics

3.1 Input Pressure Validity

We obviously expect the instrumentist to apply a
mouth pressure that produces a sustained sound.
However, note that some values of this input pressure
may generate no admissible solution in our model. For
example, equation (2) clearly requires

pm(t) ≥ p+(t) + p−(t), (9)

in other words, that at any time t, the pressure p(t) at
the origin of the acoustic tube shall be smaller than the
mouth pressure. Otherwise, no solution can exist.

This condition however is not sufficient to ensure
the existence of solutions; it does not enforce either the
satisfaction of another sensible assumption1: that the
air always flows from the mouth to the pipe, a condition
equivalent to p+(t)− p−(t) ≥ 0.

To analyze this issue, we rewrite equation (2) as a
quadratic equation a∆p2+b∆p+c = 0 whose unknown is
∆p = p+(t)− p−(t), and with coefficients a = µ/2ξ(t)2,
b = 1, c = 2p−(t) − pm(t). As a > 0 and b > 0, the
sum of the two solutions of this equation is negative,
hence – if the solutions are real – at least one of them is
negative. Hence, at most one solution can be consistent
with a nonnegative airflow; this solution does exist if the
product of solutions is nonpositive, which holds iff the
product ac is nonpositive, that is:

pm(t) ≥ 2p−(t). (10)

If this condition holds, there is a single, real,
nonnegative solution p+(t) − p−(t) to (2) and the
condition (9) is automatically satisfied.

1this assumption is derived in [4] under the hypotheses of
airflow conservation and of a lip aperture size much smaller than
the mouth section.

3.2 Functional Differential Equations

Under the assumption that (10) holds at every instant,
we may compute the forward pressure p+(t) as

p+(t) = P+(p+(t− τ), ξ(t), pm(t)) (11)

while the lips dynamics is structured as

ξ̈(t) = L(p+(t− τ), ξ(t), ξ̇(t), pm(t)). (12)

Relations (11) and (12) constitute a system of delay-
differential algebraic equations (DDAE, see for example
[3] for an introduction). Its state at time t is a triple
(p+t , ξ(t), ξ̇(t)) where p

+
t denotes the function defined for

θ ∈ [−τ, 0] by p+t (θ) = p+(t+ θ).
These systems are frequently reduced to neutral

delay-differential equations (NDDE), obtained by the
differentiation of the algebraic component of their
dynamics, here equation (11). This strategy is applied
in [4] where the neutral form is used to compute
approximate solutions of the system and also as a basis
for the design of observers. This approach is common2

but generates some restrictions. The most obvious
one is that the differentiation is only valid under some
regularity assumptions: the mouth pressure pm and the
initial p+0 should be absolutely continous, assumptions
that are not always realistic. Even if these conditions
are met – for example for constant mouth pressure pm
and initial forward pressure wave p+ – this derivation
validity is still subject to splicing conditions (see e.g.
[2]) and hence may require the modification of the
prescribed initial conditions.

Therefore, to avoid those complexities, we have
designed a dedicated solver instead, that computes
the solutions to this system in its original DDAE
form. We use a simple explicit Euler scheme but
with a high-frequency resolution, well above the few
kHz that would normally be required to represent the
sound output by the model with a high fidelity. This
configuration is necessary to manage with sufficient
accuracy the very oscillatory behavior of the lip that
operates near its natural frequency.

4 Observer Design

A complete estimation of a brass instrument state was
provided in the earlier work [4] in a similar context; the
observer design was based on a representation of the full
dynamics as a neutral system and the use of Lyapunov
methods. We have already pointed out that we favored
here a DDAE model of the system dynamics instead
and in this section, we will actually take advantage
of this representation. Our approach also focuses on
the estimation of the lips state, which is sufficient to
recover the instrumentist control parameters. As a
consequence, we design an observer whose complexity
is greatly reduced. Finally, we explicitely model the
precision of the output sound measurement to design
an observer that is adapted to this setting instead of

2the use of a dynamic Bernoulli equation instead of the static
one or of frequency-dependent impedance at the acoustic tube
boundary for example would require the modelling as a neutral
system.
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an observer that is merely robust with respect to the
presence of noise in the measure.

4.1 Direct Lip Height Estimation

4.1.1 Functional Dependency

The Bernouilli equation (2) and the expressions of the
backward pressure wave (3) and of the output pressure
(6) can be combined to explicit the dependency between
the lip height and the output pressure. We obtain

ξ(t)2 = Ξ2(pm(t), y(t− τ/2), y(t+ τ/2)) (13)

where Ξ2 is the real-valued function of the time and of
the delayed and advanced output pressure defined by:

Ξ2(pm, y−, y+) :=
µ

2(1 + λ)
× (y+ − λy−)

2

(pm − y+) + λ(pm − y−)
(14)

Note that the right-hand side of equation (14) is well
defined when the mouth pressure is greater than the
pressure at the origin of the pipe, a condition already
pointed out as necessary for the existence of solutions
in our model.

4.1.2 Sensitivity Analysis

From now on, we assume that the exact value of the
output pressure y(t) is not available and that only an
approximation of it – denoted ŷ(t) – can be used in
our computations. Consequently, the exact lip height
cannot be computed, but can be estimated with the
formula

ξ̂(t)2 = Ξ2(pm(t), ŷ(t− τ/2), ŷ(t+ τ/2)) (15)

A first-order approximation of the the error between this
estimate and the exact value ξ(t) is given by

ξ̂(t)− ξ(t) ' ∇yΞ(t) ·
[

ŷ(t− τ/2)− y(t− τ/2)
ŷ(t+ τ/2)− y(t+ τ/2)

]
(16)

where ∇yΞ(t) is a compact notation that represents the
gradient of Ξ with respect to the variables (y−, y+),
evaluated at the point (pm(t), y(t − τ/2), y(t + τ/2)).
The computation of ∇yΞ is carried out in section 5.

4.2 Discrete and Stochastic Model

4.2.1 Discrete-Time Lips Dynamics

Let X denote the lips state vector – lip height and
velocity – but τ/2 seconds in the past:

X(t) =

[
ξ(t− τ/2)

ξ̇(t− τ/2)

]
. (17)

The application of the Euler explicit scheme with step
size dt to the lips dynamics leads to

X(t+ dt) = AX(t) +Bp(t− τ/2) + u(t) (18)

where

A =

[
1 dt

−ω2dt 1− 2ζωdt

]
, B =

[
0

ω2dt(γj − γs)

]
(19)

and

u(t) =

[
0

ω2dt[γspm(t− τ/2) + ξe]

]
(20)

4.2.2 Output Noise Model

We model the difference between the measure ŷ(t) of the
output sound and the exact value y(t) as an additive
white gaussian noise n(t) of constant variance Σy:

ŷ(t) = y(t) + n(t).

The measure ŷ(t) provides some approximate value ẑ(t)
of z(t) = ξ(t − τ/2) = CX(t) with C = [1, 0]. Indeed,
using equation (16), we end up with

ẑ(t) ' CX(t) + v(t) (21)

with

v(t) = ∇yΞ(t− τ/2) ·
[

n(t− τ)
n(t)

]
. (22)

Given the properties of n(t), the perturbation v(t) has
an autocovariance equal to zero for shifts smaller than
τ . For the sake of simplicity, we postulate that this
autocovariance is actually always zero for every non-
zero time shift, effectively modelling v(t) as a gaussian
white noise. Its variance is given by

Σv(t) = ‖∇yΞ(t− τ/2)‖2 × Σy. (23)

It should be noted that despite a constant output sound
noise power, the standard deviation of v(t) is time-
dependent. Experiments, reproduced in the figure “Lip
height estimation and standard deviation”, demonstrate
that this formula provides a good approximation of the
variance of the height measure, even when the value
of ∇yΞ is an approximation based on noisy data (see
section 4.2.4).

0.0 0.5 1.0 1.5 2.0 2.5
time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

li
p

h
ei

gh
t

[m
m

]

height value

height estim.

2-σ confidence interval, estim.

Figure 1: Lip height estimation and standard deviation
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4.2.3 State Disturbance

The combination of equations (1), (3) and (6) provides

p(t− τ/2) =
y(t) + λy(t− τ)

1 + λ
. (24)

The substitution of y by ŷ in this equation leads to the
definition of a measurable approximation p̂(t − τ/2) of
p(t − τ/2). The right-hand side of (18) can then be
expressed as

X(t+ dt) = AX(t) +Bp̂(t− τ/2) + u(t) + w(t) (25)

where w(t) = [w1(t), w2(t)]
t with w1(t) = 0 and

w2(t) = −ω2dt(γj − γs)
n(t) + λn(t− τ)

1 + λ
. (26)

Using an approximation similar to the one already made
for v(t), we model w(t) as a gaussian white noise with
covariance matrix

Σw = ω4dt2(γj − γs)
2 1 + λ2

(1 + λ)2

[
0 0
0 Σy

]
. (27)

Note that the defining equations (22) and (26) also yield
a zero covariance between v(t) and w(t+ θ) for any 0 <
|θ| < τ . Again, we will assume that we can extend that
assumption to any |θ| > 0. However we do neglect the
covariance between v(t) and w(t), that is significant: we
have Σvw(t) = [0,Σvw2(t)] with

Σvw2(t) = −ω2dt(γj−γs)Σy×∇yΞ(t−τ/2)·
[

λ/(1 + λ)
1/(1 + λ)

]
.

(28)

4.2.4 Kalman Filter

Principles Equations (21) and (25), together with the
stochastic modelling of v(t) and w(t), describe a system
whose state can be optimally estimated by a Kalman
filter. The measure and state noise of the dynamics are
correlated, a particularity that can be managed by the
methods exposed in [5].

The Kalman filter tracks the evolution of two
values: the state estimate at time t denoted
X(t|t) and the corresponding estimation error
P (t|t) = cov[X(t) − X(t|t)]. The state estimate
X(t|t) is defined as the conditional expectation of X(t)
with respect to y(t), y(t− dt), ..., y(0).

These values are a posteriori values that integrate
the information given by the measure ẑ(t). The a
priori estimates of the state and error that use only the
information available up to the time t− dt are denoted
X(t|t − dt) and P (t|t − dt). The two sets of values at
time t are related by the projection formula

X(t|t) = X(t|t− dt) +K(t)(y(t)− CX(t|t− dt)) (29)

P (t|t) = P (t|t− dt)(I −K(t)CP (t|t− dt)) (30)

where

K(t) = P (t|t− dt)Ct[CP (t|t− dt)Ct +Σv(t)]
−1. (31)

As in [5], we introduce w′(t) = w(t)− J(t)v(t) with

J(t) = Σvw(t)Σv(t)
−1. (32)

This auxiliary random vector is not correlated with v(t).
The computation of the a priori values at time t yields:

X(t+ dt|t) = AX(t|t) +Bp̂(t− τ/2) + u(t) (33)

+ J(t)[ẑ(t)− CX(t|t)]
P (t+ dt|t) = [A− J(t)C]P (t|t)[A− J(t)C]t +Σw′(t)

(34)

where

Σw′(t) = Σw(t)− Σwv(t)Σv(t)
−1Σvw(t). (35)

Concrete Design The implementation of this
estimator shall address the fact that the covariances
Σv(t) and Σwv(t) used in the computations are not
available. Indeed, both values depend on the gradient
∇yΞ(t − τ/2) = ∇yΞ(pm(t − τ/2), y(t − τ), y(t)) and
the exact values of y are not available, only the noisy
measurement ŷ. Our strategy is – in all occurrences of
∇yΞ in the filter computations – to replace y with ŷ.

However, this substitution has a drawback. We know
that the exact acoustics pipe model produces an output
sound y(t) such that at every instant t, the inequalities
y(t) > λy(t − τ) and (1 + λ)pm(t − τ/2) > y(t) +
y(t − τ) hold, hence ∇yΞ(t) is always properly defined.
But there is no such guarantee with the noisy data:
some values (pm, ŷ−, ŷ+) may be out of the domain of
definition of ∇yΞ. In such circumstance, we adopt the
following method: we set Σv(t) = +∞ and Σvw(t) =
[0, 0]. This choice effectively discards the measure of the
output sound from the Kalman filter equations. The a
posteriori values X(t|t) and P (t|t) are set equal to the
a priori values X(t|t−dt) and P (t|t−dt). On the other
hand the update of the state and state error estimate
are given by X(t+ dt|t) = AX(t|t) +Bp̂(t− τ/2)+ u(t)
and P (t+ dt|t) = AP (t|t)At +Σw(t).

Simulation Results Experiments demonstrate that
despite the set of approximations used in its design,
the Kalman filter performs an efficient estimation of the
lips state even in the presence of large output noise.
The steady-state behavior of the filter is depicted on
the picture below when t < 5 ms, for a signal-to-noise
ratio of 12 dB. In this context, the lip height and lip
estimate relative error are below 1 %. Note that the
direct estimation of the height by sensitivity methods
yields at the best of times an error around 10 % and
that the maximal error is far larger.

We trigger artificially a reset of the Kalman filter
at t = 5 ms to display the transitional behavior; a few
cycles are enough to provide estimates with an error
below 10 % at all instants of the cycle.
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Figure 2: Kalman filter state estimates for ξ and ξ̇.

5 Appendix: Sound to Height
Sensitivity

Let r be the function of (pm, y−, y+) defined as

r :=
y+ − λy−

(pm − y+) + λ(pm − y−)
. (36)

When pm = pm(t), y− = y(t−τ/2) and y+ = y(t+τ/2),
r is adimensional and merely proportional to the ratio
between the airflow at the origin of the pipe φ(t) and
the difference of pressure ∆p(t) = pm(t)− p(t) between
the mouth and the pipe:

r(t) = Zc
φ(t)

∆p
=

p+(t)− p−(t)

pm(t)− p+(t)− p−(t)
(37)

The expression of Ξ2 given in (14) yields

∇yΞ
2 =

µ

2(1 + λ)

[
λr(r − 2)
r(r + 2)

]
(38)

The function Ξ2 itself can be expressed as

Ξ2 =
µ

2
r2∆p. (39)

Hence, as ∇yΞ = ∇yΞ
2/2

√
Ξ2, we obtain

∇yΞ =

√
µ

2∆p

1

1 + λ

[
λ(r/2− 1)
(r/2 + 1)

]
(40)

and

‖∇yΞ‖ =

√
µ

2∆p

1

(1 + λ)2

[(r
2
+ 1

)2

+ λ2
(r
2
− 1

)2
]
.

(41)

∆p = pm − p [×10 4
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Figure 3: Sound to lip height sensitivity, with iso-value
curves in black.
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