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We discuss the application of the so-called global approaches, arising from the field of hydrodynamical
instabilities, to aeroacoustic resonators. We illustrate the potential of the approach for the case of a jet passing
through two successive holes (”hole-tone” configuration) which is relevant to human whistling, birdcalls and tea
kettles. First, treating the hydrodynamic system as locally incompressible and linearized around a base flow, we
compute the conductivity of the double aperture and show that this one can provide positive energy feedback to an
external system. Secondly, introducing the coupling with an acoustical resonator through convenient impedances
imposed as boundary conditions and solving an eigenvalue problem, we show that the full system is effectively
linearly unstable and able to support self-sustained oscillations. The results compare favorably with recent
experiments, and the analysis yields novel insight into the nature of the feedback mechanism responsible for
the whistling. The application to the related situation of a corrugated pipe, and to more realistic instruments such
as ocarinas and free reeds, will also be discussed.

1 Introduction
Wind instruments, and most particularly those of

the flute family, are in essence self-sustained oscillators
composed of two parts : an acoustic system (the tube
or more generally the resonator) and a hydrodynamic
system (a shear flow such as a jet or a shear layer). The
second system is essential for its ability to provide positive
energy feedback to the first one, but is generally the
less understood. The most common approaches to such
problems are the so-called lumped models, in which the
hydrodynamical system is reduced to a discrete system
with a limited degrees of freedom arising from a crude
modeling of the flow, which disregards important features
such as the thickness of the boundary layers and shear
layers, the role of viscosity, etc... The purpose of this work
is to explore an alternative approach, which consists of
treating the hydrodynamical system as a continuous system
and to resolve it in a rigorous way starting from the full
Navier-Stokes equations in a representative computational
domain.

More specifically, our goal is to explore the potential
of a range of modern theoretical/numerical methods
called global stability approaches. Those methods are
particularly suited to reproduce and explain the behaviour
of hydrodynamic self-sustained oscillators, such as vortex
shedding in the wake of bluff bodies [2], resonating cavities
[3] or path oscillations of falling objects [4]. For such
problems, the combination of linear, weakly nonlinear and
sensitivity approaches allows to predict the thresholds of
self-oscillation, the amplitudes of the limit cycles and to
determine the effect of small structural perturbations on
the flow field, and ideally complement heavier numerical
approaches such as direct simulation.

For the application to aeroacoustic resonators, the key
idea of our approach is to assume that the hydrodynamical
system is locally incompressible (an hypothesis which is
justified because the typical Mach numbers are low and
because the acoustical wavelengths are generally larger
than the dimensions of the hydrodynamical system) and
model the interaction with the acoustic system through the
imposition of complex impedances as boundary conditions
of the hydrodynamic system.

After presenting the bases of the global stability
approaches, we will illustrate their potential for the case
of a jet passing through two successive holes (”hole-tone”
configuration) which is relevant to human whistling,
birdcalls and tea kettles. Application to the related situation
of a corrugated pipe, and to more realistic instruments such
as ocarinas and free reeds, will also be discussed.

2 Global approaches for hydrodyna-
mic instabilities: brief introduction

We give here a brief introduction to the global methods,
with the emphasis on the similarities and differences with
respect to classical linearized approaches in acoustics.

The starting point for global hydrodynamical approaches
is the assumption that the total flow field [Utot, Ptot] only
displays small-amplitude deviations [u, p] with respect to a
mean state called the base flow [U0, P0]. Namely :

[U, P] = [U0, P0] + ε[u, p]e−iωt + O(ε2) (1)

with ε � 1. The first step is the calculation of the base
flow, namely a steady solution of the incompressible Navier-
Stokes equations, which can be written in a formal way as
follows :

NS ([U0, P0]) = 0 (2)

This base flow is usually solved using iterative methods,
such as the Newton-Raphson algorithm. We employ this
numerical procedure because of it is extremely efficient due
to its quadratic convergence property.

Then, assuming that the perturbation is of small
amplitude1, the perturbation obeys a linear system which
can be written formally as follows :

∂tu = −iωu = NSL(u, p) (3)

Where the operator NSL represents in a symbolic way
the linearized Navier-Stokes equations. Starting from this
linear system, we present briefly some possible analysis:

(i) Forced problem: Just as customarily done in linear
acoustics, we can impose a non-homogeneous
boundary condition (either on the pressure p or on the
flow rate q) in the form of a harmonic forcing with
frequency ω (real). After discretization, the linear
system (2) gets the form (A − iωB)X = F, where X
is the discretized version of the unknown flow field
[u, p], A,B are matricial operators, and F represents
the forcing term. In open flows, this method can be
used to characterize the ability of a shear flow to
amplify spatially perturbations as consequence of a
local forcing. We will show that the same method can
also be used to characterize the possible retroaction
of a shear flow in on a acoustic system.

1Note that in global stability approaches, the small amplitude condition
amounts ε|u| � |U0 |, which differs from the condition normally used in
linear acoustics, namely ε |u| � c0. Note also that our linear approach fully
retains the interactions of velocity perturbations with the base flow, which
are usually considered as a nonlinear effects in classical acoustics.
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(ii) Eigenvalue calculation: we consider the linearized
problem with homogeneous boundary conditions.
After discretization, the problem gets the classical
eigenvalue form: (A − iωB)X = 0. Note that here,
the eigenvalues ω = ωr + iωi are generally complex
numbers. The interesting situations are encountered
when ωi > 0, in which case the flow is said to be
globally unstable. The corresponding eigenvector
X is called the global mode. Note that instability
generally arises as a consequence of the mean flow
shear ∇U0 ; while viscosity generally has a stabilizing
effect. So in most situations, global instability is
encountered when the Reynolds number Re exceeds
a threshold value Rec.

(iii) Structural sensitivity: This third approach, which is
a quite recent development in global stability theory
[1, 2], provides the possibility to identify the spatial
regions of the flow which are responsible of the
self-sustained instability mechanism. This tool is
based on the concept of adjoint eigenmodes [u†, p†].
Mathematically, an adjoint mode corresponds to
the solution of the transposed eigenvalue problem
(AT − iωBT )X† = 0. Physically, it represents the local
receptivity of the mode to external forcing. Another
key quantity is the so-called wavemaker, defined
mathematically as WM = |u| · |u†|. Physically, this
quantity represents the local ability of the mode to
provide positive feedback on itself, so it is a very
powerful tool to identify the regions of the flow
responsible for the instability mechanism.

(iv) Weakly nonlinear method: This methods consists of
continuing the expansion (1) as a series of powers
of ε. Then, solving up to third order and applying
compatibility conditions yields amplitude equations.
The latter allow to predict the properties of the limit
cycle corresponding to self-sustained oscillations in
the vicinity of the threshold of instability.

3 The ”hole-tone” configuration
The ” hole-tone” configuration consists of a circular

jet exiting for a circular hole and going through a second
hole of approximately the same radius in a plate positioned
downstream. This situation gives rise to powerful whistling
tones and is encountered in various situations, including
human whistling, birdcalls, tea kettles, as well as many
industrial appliances. First studied by Sondhaus [5], this
situation has attracted interest of early acoustic researchers,
including Helmholtz, Rayleigh [6], and Bouasse [7].
Recently, Henrywood & Agarwal [8] conducted a minutious
experimental investigation and identified two regimes : at
low velocities the frequency is selected by the cavity located
between the two holes, while are high velocity it is selected
by the jet dynamics. Yet, the mechanism allowing positive
energy feedback in each of these regimes, and the detailed
interplay between the acoustic and hydrodynamical system
remains to be clarified.
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Figure 1: Geometry and computational domain for the
tone-hole configuration

Figure 2: Structure of the incompressible base flow for
Re = 500 (upper half : pressure ; lower half : vorticity).

3.1 Geometry and base flow
The geometry used for the global calculations is

displayed in figure 1. The flow goes through two successive
holes in plates of radius R and thickness h. The boundaries
associated with the ”walls” are noted Sw, and the lateral
boundary of the cavity enclosed between the two plates is
noted Sc. The computational domain includes an ”inlet
chamber” with boundaries Si and Sl and an outer domain
with boundary So. He choose the dimensions of the holes
and cavity to be geometrically similar with case (2) of ref.
[8] ; namely, R = 1/2, h = 1/3, Lc = 6.08,Rc = 4.1666.
The dimensions of the inlet chamber and outer domain are
not important : they are taken sufficiently large so as not to
influence the results.

The numerical discretization uses finite-elements relying
on the FreeFem++ software. Thanks to the automatic mesh
adaptation facility provided by this software, the numerical
mesh is refined in the region of the shear layer, and
especially at the edges of the holes where the flow displays
the steeper gradients.

The base flow is computed as the steady solution with
a constant volume flux Q0. In practice we set this flow by
imposing a constant normal velocity at the inlet boundary
Si. We impose no-slip conditions (U0 = 0) on the walls Sw,
no-penetration condition (U0 · n = 0) on the lateral wall Sl

of the inlet chamber, and convenient outlet conditions [4] on
the outer boundary So. The boundary of the intermediate
cavity Sc is generally considered as closed, but the case of
an open cavity has also been tried.

The base flow is parametrized by the Reynolds number
based on the diameter and the mean velocity across the hole:

Re =
2RUm

ν
=

2Q0

πRν
(4)

The computed base flow is represented in figure 2 for the
case Re = 500. The most important quantity associated to
the base flow is the relationship between the flow rate Um
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Figure 3: Real part Γ (plain lines) and imaginary part ∆

(dashed lines) of the conductivity for (a) a single hole with
Re = 500 ; (b) two holes with Re = 100 ; (c) two holes with
Re = 300; (d) two holes with Re = 500. In (a) thinner lines

correspond to inviscid theory [9].

and the pressure loss Pi,0 − Po,0. For the case displayed in
the figure we obtain (Pi,0 − Po,0)/(ρU2

m) = 1.047.
Although not displayed here, we have also considered

for purposes of numerical validation the case of a jet passing
through a single hole of zero thickness. In this latter case,
for Re in the range [500 − 1000] we find an almost constant
value of the pressure drop, (Pi,0−Po,0)/(ρU2

m) ≈ 1.278. This
compares well with the classical modeling obtained from
the Bernoulli theorem, which leads to (Pi,0 − Po,0)/(ρU2

m) =

1/(2α2), where α ≈ 0.625 is the so-called vena contracta
coefficient [9].

3.2 Response to a harmonic forcing
Following method (i) described in section 2, the

response to harmonic forcing is done by solving a linear
system, where the right-hand-side represents the modulation
of the flow rate along the inlet boundary (see figure 1). We
first validated the approach for the case of a single hole
where a theoretical model is available [9].

3.2.1 Theory : the Rayleigh-Howe conductivity

The problem of unsteady, low-amplitude flow though a
circular aperture was initially solved by [6] in absence of
a mean flow and in the potential case. The problem was
reconsidered by [9] in the presence of a mean flow across
the hole, modeled as a potential jet bounded by a circulation
sheet. The key quantity in this situation is the conductivity,
defined as the ratio between the fluid acceleration and the
pressure jump across the aperture :

K ≡ 2R(Γ − i∆)
−iωρ0q

(p+ − p−)

Physically, the real part Γ corresponds to a reactance and
can be related to the ”equivalent length” of the plug of fluid
oscillating back and forth through the hole, encountered
in the classical theory of the Helmholtz resonator. The

Figure 4: Flow perturbation due to a small-amplitude
harmonic forcing for ωR/U0 = 2 (a) and ωR/U0 = 3.3 (b).

Upper half : pressure ; lower half : vorticity.

imaginary part ∆ correspond to a resistance. In the absence
of mean flow, the classical result is K = 2R, hence
Γ = 1,∆ = 0. Howe [9] extended this result yielding
formulas giving Γ and ∆ in terms of the Strouhal number
S t = ωR/U. These predictions are plotted in figure 3a with
thin lines. Note the quantity ∆ is directly related to the flux
of energy transferred from the incoming oscillating flow
to the jet (Eq. 4.6 of [9]). For a single hole ∆ is always
positive, meaning that the aperture acts as a sink of energy.

3.2.2 Numerical result : single hole configuration

The thick lines in the figure 3(a) display the two
components of the conductivity computed through our
approach, in the case Re = 500. The agreement with
the prediction of [9] is quite good, especially in the low-
frequency range. We have also repeated the calculation
for other values of Re, and find that the results are almost
independent of viscosity for Re > 500.

3.2.3 Numerical results : two-hole configuration

We now come back to the configuration with two
successive holes. Figure 3 displays the computed
conductivities, for Re = 100, 300, 500. We find that
as Re is increased, ∆ becomes negative in several intervals
of frequencies. This means that the jet can actually act
as a source for energy for the incoming flow. This is a
strong indication of global instability of the hydrodynamical
system.

Figure 4 shows the structure of the flow perturbation
(depicted through pressure and vorticity isocontours), for
two values of ω which corresponds to situations leading
to negative ∆. It can be seen that the perturbation is
characterized by an even number of vertical structures
inside the cavity. On the other hand, for the values of
ω corresponding to a maximum of ∆ , the structure (not
shown) is characterized by an odd number of structures.
This suggest that the phase relationship between the vortex
shedding process occurring at each holes plays a key role in
the process.
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Figure 5: Strouhal number S t = ωrR/(2πU0) and
amplification rates ωi of the global modes as function of Re

in the case of a closed cavity.

3.3 Eigenvalue analysis
We thus revert to an eigenvalue calculation (approach

(ii) of section 2) of the linearized hydrodynamical problem
with homogeneous boundary conditions. Apart from the
wall Sw where the no-slip, condition (u = 0) is the only
relevant one, we have to discuss the condition at surfaces
Si and So representing the matching with upsteam and
downstream domain, and the condition at the ”bottom” of
the inlet cavity Sc. As a starting point, we simply impose a
vanishing of the oscillating pressure at the inlet and outlet
: pi = po = 0. Physically, this signifies that two-holes
junctions actually separates two outer domains of very
large volume, and that radiation losses are neglected. These
assumptions could be improved in a subsequent step, for
instance by using a reactive impedance modeling the effect
of a large volume upstream and a resistance modeling the
effect of radiation losses downstream, but we leave these
issues aside and concentrate here on the modeling of the
condition at the bottom of the cavity Sc. We will consider
two cases :

3.3.1 Results for a ”closed cavity”

In the assumption of a closed cavity, Sc is considered
as a rigid wall, so we use the no-slip condition condition
u = 0. Because of incompressibility, this also implies that
the instantaneous flow rate q though both holes is the same.

We have solved the global stability problem for this case
with Re ranging from 200 to 1400. The real and imaginary
parts of computed eigenvalues are plotted as function of Re
in plot 5. We can see that as Re = Rec ≈ 400 the flow
becomes globally unstable, with the onset of a global mode
with oscillation rate ωr ≈ 3.3. Then as Re up to 6 other
modes also gets unstable.

Figure 6(a) displays the structure of the unstable global
mode obtained for Re = 500 (for a slightly different
geometry where the edges of the hole are rounded). The
structure is very similar to that obtained for the forced
problem with ω (figure 4b). In addition, we also display the
structure of the corresponding adjoint mode (figure 6(b))
and wavemaker (figure 6(c)). These quantities indicate that
the instability mechanism entirely lies within the portion of
the shear layer located inside the two cavities. Moreover,
the highest level in both the adjoint and the wavemaker is
encountered just at the edge of the first hole, at the point of
formation of the shear layer.
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Figure 6: (a) Most unstable eigenmode for Re=500
(vorticity) ; (b) corresponding adjoint u†x; (c) corresponding

wavemaker.
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Figure 7: Strouhal number S t = ωrR/(2πU0) and
amplification rates ωi of global modes as function of Mach,

in the case of a ”reactive” cavity

3.3.2 Results for a ”reactive cavity”

According to [8], in the low-frequency range, the
frequency is selected by the resonance of the cavity located
between the two holes. To capture this régime, we have to
introduce in our locally incompressible model an impedance
representing the effect of compressibility inside the cavity.
In the line of the classical modeling of the Helmholtz
resonator, we write the balance of mass inside the cavity :

∂(ρ′Vcav)
∂t

=
Vcav

c2
0

∂pcav

∂t
= ρ0qcav, (5)

Where qcav is the volume flux coming out of the cavity.
Expressed as an impedance, this leads to :

Zcav =
pcav

qcav
= −

ρc2
0

iωVcav

To remain consistent with our locally incompressible
assumption, we have to impose this volume flux at the upper
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boundary of the computational domain representing the
cavity. We emphasize that the actual volume of the cavities
in the computed domain displayed in figure 1 does not need
to be the same as the volume Vres of the assumed resonator.
The procedure being, by essence, a asymptotic matching,
the numerical volume is only required to be ”sufficiently
large” to allow a matching with a uniform pressure.

Note that the definition of the impedance of the cavity
introduces the speed of sound c0, which was absent from the
purely incompressible case considered so far. Consequently,
the problem is now characterized by two non dimensional
parameters : Re = RU0/ν and Ma = U0/c0. To compare
with the experimental results of Henrywood & Agarwall,
we have chosen to privilegiate a similitude in terms of
the Mach number, and to fix arbitrarily the Reynolds to
Re = 500 2. The eigenvalues of the global modes computed
in this way are displayed as function of Ma in figure 7 (the
branches are overlined in red on the portions of the curves
corresponding to instability). The result clearly show the
existence of the two kinds of branches and a switching
between two regimes. The first series of branches have
approximatively constant Strouhal numbers. Their structure
(figure 8a ) is qualitatively similar to those obtained in the
closed case of through conductivity calculations. These
modes are of hydrodynamical nature and weakly influenced
by the effect of compressibility on the cavity. A branch of
a different nature exists only in the low-mach range, and
the corresponding Strouhal is inversely proportional to Ma.
This means that the dimensional frequency is independent
of the flow velocity going through the two apertures. This
mode can be identified with the ”Helmholtz” mode of the
cavity. Indeed, inspection of its structure (figure 8b ) shows
that the flow rate going through each holes associated with
the perturbation are in phase. The transition between the
two regimes revealed by our results is in perfect agreement
with the experimental observations of [8]. The difference
is that we generally obtain several unstable global modes
with different frequencies, while in the experiment a single
frequency is observed. The selection between the several
modes revealed by global stability calculations is most
likely a nonlinear process.

4 Summary and perspectives

4.1 Summary for the tone-hole configuration
In this paper, we have illustrated the applicability

of global stability approaches to aeroacoustic resonator,
focussing mainly on the tone-hole generic configuration.
We have shown that the results are in good accordance
with experiments, and provide original insight into the
physical mechanism responsible for self-oscillation. In
particular, in the regime in which the frequency selection
is of hydrodynamical nature (the high-velocity regime in
figure 7), our result indicate that the compressibility of
the flow does not play any role, contrary to the argument
of [8] who suggest that the positive feedback is provided
by emission of sound waves by the vortices formed at the
second hole which propagate back towards the first hole.

2For higher Re, the results are qualitatively similar as for Strouhal
numbers of the global modes; on the other hand the computations require
much finer meshes

Figure 8: Structure of the global unstable modes in with a
reactive cavity for (a) Ma = 0.01, Re = 500 and S t = 0.52
(ωr = 3.3) ; and (b) Ma = 0.001, Re = 500 and S t = 8.3

(ωr = 26). the two main regimes, in the case of a ”reactive”
cavity. In (b) the streamlines associated to the eigenmode

are displayed.

4.2 Application to wind instruments
Motivated by this first success, our goal is now to apply

the same approach to the modeling of wind instruments.
A second successful attempt has already been done for the
case of a whistling corrugated pipe[10], which, if not yet a
”true” musical instrument, is able to generate several tones
of musical interest. In this case, the global incompressible
approach is able to describe the hydrodynamic instability
mechanism which interacts with the standing waves of the
tube to generate the tones. Our next step is to apply the same
methods to flute-like instruments. In accordance with our
general idea, which is to concentrate on the hydrodynamical
part of the problem and to simplify as much as possible
the acoustic part, an ocarina-like instrument, with a single
frequency, would be the best candidate. Finally, we are
currently exploring the applicability of the approach to reed
instruments, especially free-reeds where the acoustic part is
the simplest. The situation is certainly more difficult, but we
expect to treat it also through a kind of ”reactive” boundary
condition representing the effect of displacement of the reed.
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