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Proponents of the Pulse Forming Theory claim that the reed closing time in wind instruments remains

approximately constant over most of their playing range. Another study by Ollivier and Dalmont might provide

an explanation for this phenomenon in terms of the geometry of the cone. Specifically, for a Helmholz motion,

the ratio N of the cone (which relates its length to the length of the missing part of the cone) is expected to be the

same as the ratio of the opening time to the closing time of the reed displacement signal. The objective of this

paper is to find out with the aid of simulations via physical modelling whether the geometrical ratio of a cone Nc

corresponds to the ratio of the time domain reed displacement signal Nt. For this purpose, two cones which are

identical except for the parameter Nc will be taken, and a simulation will be made to obtain the pressure inside the

mouthpiece (which, as shown by Ollivier and Dalmont, is in phase with the reed displacement). The ratio Nc of

the cone will be compared to the ratio Nt of the obtained signal. Additionally, two lengths of each cone will be

simulated, which means that the geometrical ratio Nc will be shortened, expecting the ratio Nt of the time domain

mouthpiece pressure signal to shorten accordingly. Results are presented and discussed.

Figure 1: Lips or reed movement and the resulting source

spectrum calculated from a closing time of 1/10 of the

period (above) and calculated from a closing time of 1/5 of

the period (below) (reprinted from [7]).

1 Introduction

Researchers have found that the closing time of wind

instruments remains approximately constant over their

playing range [1] [2] [3] [4] [5] [6] [7]. A recent study

conducted by Carral and Reuter [8] measured the sound

pressure close to the top of the oboe while being played.

Notes of a diatonic C major scale over two octaves were

played in three dynamic levels, and both opening and closing

times were measured according to [9] and [10]. While the

opening time varied among all notes between 0.2 and 3 ms,

the closing time always remained within the interval between

0.5 ms and 1.2 ms. Proponents of the Pulse Forming Theory

(cited above) have likewise concluded that the fact that the

closing time remains approximately constant is the cause of

the spectral gaps found in the spectra of wind instruments,

as shown in Figure 1.

1.1 Relationship between the bowed string

analogy and the reed closing time

Ollivier and Dalmont [9], make an analogy between

string instruments and conical woodwind instruments:

changing the position of the string excitation (where the

string is bowed or plucked) is equivalent to changing the

length of the truncation for conical woodwinds (where

the cone is cut to place the mouthpiece), such as the oboe

(see Figure 2). A crucial difference between string and

Figure 2: Summary of the formal analogy between the

bowed string and woodwind resonators. White arrows

indicate the location of the mouthpiece or the bow. A string

bowed in the middle (a) is analogous to a clarinet (c) or (d).

A string bowed at a location such as La � Lb (b) is

analogous to a cylindrical saxophone (e). If Lb

La
= N is an

integer, it is equivalent to a stepped cone with N cylinders

(f). It is approximately analogous to a truncated cone (g) of

length Lb, with La the length of the missing part of the cone

(dashed lines) (reprinted from [9]).

woodwind players though, is that woodwind players cannot

control this parameter, since the length of the truncation is

fixed. Moreover, the ratio of the reed opening and closing

time of a cone excited by a reed is related to the ratio of the

used cone to the missing part of the cone: Let T = to + tc
be the signal period, to and tc the opening and closing times

respectively, Lb the length of the truncated cone, and La the

length of the truncation. If to
tc

or tc
to
=

Lb

La
, the oscillation is

called “Helmholz motion”, in which case the ratio of the

durations of the two parts of the signal is determined by the

resonator [11]. Assuming a “Helmholz motion” scenario,

N =
Lb

La

=
to

tc
(1)

to = Ntc (2)

Lb = NLa (3)

The signal period T is related to the total length of the

cone (including truncation) by [12]:

La + Lb =
λ

2
(4)
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with

λ =
c

f
(5)

hence

tc + to =
2

c
· (La + Lb) (6)

and using equations (2) and (3)

tc =
2

c
· La (7)

Therefore, tc is proportional to La, and given that for a

given instrument La is constant, so is tc.

2 Objectives

The objectives of this paper are as follows:

1. To find out whether the geometrical ratio of a cone Nc

and the time ratio of its corresponding mouth pressure

signal Nt are the same, as predicted by [9];

2. to compare the closing time tc of a simulated cone with

what was measured for the notes C4 and G4 in [8] for

the real oboe;

3. to verify that, when the cone truncation La of a

simulated cone is increased, the closing time tc is also

increased;

4. to verify that, for a shorter closing time, the first

spectral gap of the mouthpiece pressure signal is

shifted to a higher frequency, as predicted by the Pulse

Forming Theory.

3 Methodology

According to [9], the reed opening and the mouthpiece

pressure have the same phase, so one can measure the

reed closing time by looking at the mouthpiece pressure.

The latter can be either measured during performance or

simulated with a time domain physical model.

3.1 Instruments

For the reference cone (the Oboe), the cone (half) angle

was taken as θ = 0.75◦ from what was measured on a real

oboe in [13]; the total length of the cone LT was chosen so

as to give a playing frequency that approximates a note C4

(260Hz) and a note G4 (390Hz), giving LT = 650mm and

LT = 440mm respectively; and the length of the missing part

of the cone La was chosen to be La = 91mm, as measured

for a real oboe in [13]. In this case, κ = Lb

LT
, as defined in [13]

gives κ = 0.86 where Lb = LT − La is the used cone, and La

is the length of the missing part of the cone.

Since the objective of this paper is to measure what

happens when the geometrical ratio Nc is changed, a second

instrument (which will be referred to from now on as

“tarógató-like oboe” or “TLOboe”) was designed with the

same θ and LT parameters as the Oboe, but with a κ = 0.75

for the note C4 (as measured in [13] for the case of the

tarógató), giving Lb = κLT = 487.5mm. A summary and

θ = 0.75◦ Parameter C4 G4

Oboe LT [mm] 650 440

Lb[mm] 559 349

La[mm] 91 91

DT [mm] 2.38 2.38

DB[mm] 17 11.52

N 6.14 3.84

TLOboe LT [mm] 650 440

Lb[mm] 487.5 277.5

La[mm] 162.5 162.5

DT [mm] 4.25 4.25

DB[mm] 17 11.52

N 3 1.71

Table 1: Geometrical parameters of the simulated cones.

comparison of these four cones is presented in Table 1 and

in Figure 3.

An 8 mm long cylinder is attached to the top of each of

the four cones described above, corresponding to the volume

of the reed. This ensures that the first sample of the simulated

impulse response of the instrument is equal to zero.

3.2 Physical Model

The double-reed excitation mechanism can be modelled

using a single mass-spring system, as in the case of single-

reed modelling, and assuming symmetric displacement for

both blades. The equation of motion for the reed is given by

m
d2y

dt2
+ mg

dy

dt
+ kαy = Δp (8)

where Δp is the pressure difference across the reed, y is

the reed displacement from its equilibrium position, m the

mass per unit area, g the damping per unit area and kα the

effective stiffness per unit area of the reed. The methodology

proposed in [14] is adopted for the numerical simulations.

The coupling of the nonlinear excitation element with

the linear resonator is achieved via convolution with the

reflection function r f of the resonator. This was obtained

from the input impedance Zin which was simulated using the

program VIAS (Versatile Instrument Analysis System1) by

inputting the bore geometry. The reflection function r f is

then calculated as described in [15].

3.3 Signal Analysis

From the mouthpiece pressure signal it is possible to find

out the opening and closing times of the reed. This is done

as follows:

The mean value of the pressure over a period must be zero

[9]. The pressure Pre f = Pmax − Pmin is calculated. The time

in which the pressure is below Pre f is then the closing time,

as explained in [10].

Each period of the steady state of the time domain signal

was found by looking at the pressure maxima. Then Pre f was

calculated, and the number of samples that fell above and

below Pre f were counted and saved as opening samples No

and closing samples Nc respectively. The opening time to and

1http://www.bias.at/
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91 mm
162.5 mm

650 mm

440 mm

Figure 3: Schematic of the instruments described in Table 1.

Parameter C4 G4

Oboe tc[ms] 0.10 ± 0.01 0.12 ± 0.01

to[ms] 3.94 ± 0.01 2.89 ± 0.01

Nc =
Lb

La
6.14 3.84

Nt =
to
tc

39.4 24.1

TLOboe tc[ms] 0.54 ± 0.01 0.56 ± 0.01

to[ms] 3.25 ± 0.01 2.00 ± 0.02

Nc =
Lb

La
3.00 1.71

Nt =
to
tc

6.02 3.57

Real Oboe tc[ms] [0.89, 1.00] [0.87, 0.94]

to[ms] [2.87, 2.95] [1.63, 1.67]

Nt [2.95, 3.22] [1.78, 1.87]

Table 2: Opening time to and closing time tc of the

mouthpiece pressure signals calculated from the simulations

of the different cones and from measurements on the real

oboe, as well as the geometrical ratio Nc and the time ratio

Nt.

closing time tc are calculated from the number of samples as

follows: to =
No

fs
and Tc =

Nc

fs
.

The mean and standard deviation of No and Nc

throughout the duration of the steady state of the note was

calculated for each simulated signal.

4 Results

4.1 Closing time tc and opening time to, and

Ratios Nc and Nt

The closing time tc and opening time to, the geometrical

Nc and time Nt ratios measured for the simulated mouthpiece

pressure signals from the cones described in Section 3.1, as

well as those for the real oboe that were presented in [8] are

shown in Table 2.

As shown in Table 2, the opening time to and closing

time tc of each instrument in both notes did not change

proportionally to the playing frequency. But comparing tc
of both instruments, one can see that the tc of the Oboe is

shorter than that of the TLOboe. From this one can conclude

that the shorter La is, the shorter tc becomes. It is worth

noting that all four cones were simulated using exactly

the same reed parameters. Therefore the difference in tc
between the Oboe and the TLOboe cannot be attributed to a

difference in reed parameters.

According to equation (7), if the length La is known, the

closing time tc can be predicted. However, this prediction

(0.5ms for the Oboe, and 1ms for the TLOboe), is five times

as much as what was calculated for the Oboe, and twice as

much as for the TLOboe. In the case of the TLOboe, the

ratios Nc and Nt also differ by a factor of 2, whereas for the

Oboe the ratios differ by a factor of 6. The calculation of tc
depends on the reference value Pre f .

The closing time tc, opening time to and the time ratio

Nt of the simulated Oboe obtained here can be compared to

what was measured in [8] for the real oboe. Although the

geometry of the simulated Oboe is probably not exactly like

that of any real oboe, an attempt was made to reproduce a

realistic geometry (see [13]). The closing time of the real

oboe is almost 9 times longer than that of the simulated Oboe.

Some reasons for this could be that the tone holes have an

effect on the closing time, or that the geometry of the real

oboe is not as simple as assumed. Interestingly, the time ratio

Nt of the real oboe is closest to the geometrical ratio Nc of

the TLOboe. Another fact worth noting is that, in order to

simulate the instruments described in Table 1, an 8mm long

cylinder was added at the top. The effect that this might have

in tc is unclear.

4.2 Spectra

The spectral envelopes of the mouthpiece pressure

signals for the two instruments (Oboe and TLOboe)

simulated here for notes C4 and G4 are shown in Figure 4.

The first difference that can be seen in the spectra of these

two instruments is that the Oboe has a wider lobe at the low

frequencies than does the TLOboe. Indeed all harmonics

have a higher amplitude on the Oboe than on the TLOboe.

This is true for both notes. This will result in the Oboe having

a brighter sound colour than the TLOboe.

According to the Pulse Forming Theory, in the case of

the oboe and other wind instruments, the reed closing time

remains constant as the frequency changes, and hence some

harmonics are not excited or very weakly excited, resulting

in a spectrum that resembles a
sin(x)

x
function, whereby

the areas where the harmonics have a high amplitude are

called formants [3], [7]. The term formant in this case is

used because the frequencies that fall in those areas are

always present, independently of which note is played. One

way of estimating the closing time tc of recordings of real

instruments has been to find the frequencies of these gaps.

In the case of the instruments presented here, we would

have to find where the gaps in frequency occur. Table 3

shows the frequencies of the first four frequency gaps. All

frequency gaps of the Oboe occur at a higher frequency than

those of the TLOboe.

From Table 3 one can see that there is at least one

frequency gap that occurs in both notes: For the case of the

Oboe these are at 3 and at 5.7kHz, and for the case of the

TLOboe these are at 2.4 and at 3.5kHz. Interestingly, the

inverse of the second Oboe common frequency and of the

first TLOboe common frequency gives us a value that is

close to the closing time tc calculated and shown in Table 2

(0.18ms and 0.42ms respectively).

4.3 Cylinder approximation

According to [9], when the geometrical ratio Nc is

an integer, the cone can be approximated by a series of
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Figure 4: Spectral envelope of the Oboe and TLOboe playing the note (a) C4 and (b) G4.

C4 G4

Oboe 1.5 3

3 5.7

4.5 8

5.7 10

TLOboe 0.8 1.2

1.3 2.4

2.4 3.5

3.5 4.7

Table 3: Frequencies (in kHz) of the spectral gaps of the two

instruments for both notes.

cylinders of increasing diameter, as shown in Figure 2.

This ratio for the TLOboe playing the note C4 is Nc = 3.

The input impedance of the cone as described in Table

1 (without the 8mm long cylinder at the top) and of its

cylinder approximation is shown in Figure 5. The peaks of

the impedance of the cylinder approximation are harmonic,

whereas those of the cone are not (as expected for a cone

impedance [12]). An interesting fact is that every fourth

harmonic of the cylinder approximation is an antiresonance

(which is what would be expected in the spectrum of a

string), and it coincides with an antiresonance of the cone

impedance. The inverse of that frequency is just under 1 ms,

which is close to the closing time found for the real oboe in

[8].

Quoting Heptner [5]:

“The resonance curve of the conical air column

is not the cause of the formation of formant

regions. This curve has obviously an influence

on the amplitude of each harmonic component,

but each effective length of air column has its

own resonance curve.”

Further on, he says:

“It can only be because the “exciter”, the

reed, does not offer these frequencies to the

“consumer”, the resonator”2.

2Translation by one of the authors

0 1 2 3 4 5
106

107

108

109

Frequency (kHz)

|Z
in

| (
M

Ω
)

Figure 5: Input impedance of the cone corresponding to the

TLOboe note C4 (blue) and of its cylinder approximation

according to [9] (red).

Since Heptner discarded the fact that the air column

could be responsible for the frequency gaps in the spectrum,

he concluded that they must come from the reed [5] . Figure

5 shows clearly that there are harmonic frequencies on

the resonance curve of the air column where a harmonic

component cannot be built upon. Moreover, if the length of

both the cone and its cylinder approximation are reduced

in such a way that the ratio Nc remains an integer, the

antiresonances fall in the same frequencies as those shown

in Figure 5, and they coincide on both impedances. It is

therefore the authors’ opinion that the geometry of the cone

has more influence on the closing time tc and therefore the

formants of wind instruments than was granted by Heptner

[5].

5 Conclusions and Future work

Two cones were taken (Oboe and TLOboe), whereby the

only geometrical difference between them was the length

of the missing part of the cone La. Two different lengths

(total length of the cone LT ) of each cone were taken, that

correspond to a first resonance that is close to the notes C4

and G4.
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The closing time tc of both Oboe and TLOboe was

approximately the same for both notes. Since all cones were

simulated using the same reed parameters, the difference

seen here of tc between Oboe and TLOboe cannot be

attributed to the reed, as opposed to what other researchers

like Heptner [5] have claimed. It appears that the shorter

La, the shorter the closing time tc. The geometrical ratios

Nc do not match the time ratios Nt. The closing time of

the real oboe does not match with what is predicted for the

Oboe. The shorter La, the higher in frequency the spectral

gaps are shifted, and the brighter the sound becomes. The

discrepancies found here, compared to what is predicted

by both the Pulse Forming Theory and the Analogy with

the bowed string theory, might be explained by the fact

that those two theories assume that the reed movement is

a square signal, which is not the case in a real instrument.

Further investigations regarding the closing time and its

dependency on the cone parameter La are planned, and

include: Simulations with more than two lengths of cone

Lb, measurements with cones manufactured with the same

simulated cone dimensions, and comparison of these with

signals from real oboes played with staples of two different

lengths, so as to match the same La parameters of the

simulated cones.
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