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Seven classical guitars were investigated in terms of their forced oscillation patterns driven by all 78 tones played
on the instrument on all six strings up to the 12th fret. The forced oscillation patterns are correlated to the first four
eigenmodes of the instruments, the Helmholtz, the wood monopole mode (0,0), and the two dipole modes (1,0)
and (0,1). Strong correlations between the eigenmodes are consistently found for all guitars, so no orthonormal
relation is found between the eigenmodes. For the forced oscillation patterns, the mode shapes are much more
consistent, while the phases change dramatically depending on the driving frequency. Also a strong dependency
on the string driving point is found, which in some cases is clearly audible. For the same frequency, the forced
oscillation patterns driven by different strings even at the eigenmodes of the guitars are also quite different, which
is not consistent with the standard theory of forced oscillations. The string dependency is consistent within single
strings.

1 Introduction
The acoustics of classical guitars has investigated the

instrument in terms of its frequency response [1] [2] [4] [5].
The lower modes of the guitar body are found to have the
Helmholtz resonance as its lowest frequency of around 100
Hz, followed by a monopole wood resonance at around 200
Hz, again followed by two dipole modes, the first splitting
the top plate into left and right (1,0) around 250 Hz - 350
Hz, the higher splitting the top plate into top and bottom
(0,1) between 350 Hz - 450 Hz. The mode frequencies are
deviating strongly for the dipole and higher modes, while
the Helmholtz is designed by most classical guitar builders
to be around 100 Hz and therefore slightly below the
open A-string tone. The eigenmodes have been visualized
also using laser interferometry [3] [11]. Another methods
of visualization is using microphone arrays and acoustic
holography [6] or equivalent source methods [8]. These
methods justify the associations of mode shapes to certain
peaks in the resonance spectrum of the instruments. The
guitar body is taken as a complex geometry, where top and
back plates couple to the inclosed air, therefore all modes
are combination modes.

In this standard view of the guitar, the guitar body is a
resonator radiating the frequencies supplied by the strings
as the generators. Therefore it is assumed that the impulse
response of the guitar body is sufficient to characterize the
instrument and the frequencies of the string drive the body
modes more or less strong, according to the strength of the
eigenmodes in the resonance spectrum. To investigate to
which extend this view is correct, a sound method is to take
a look at the forced oscillation patters of the guitar driven
by the strings themselves. So rather considering the guitar
acoustically in terms of driving its body by sinusodials, as
done with the interferometry methods, or by knocking on
the bridge, measuring its impulse response, in this paper the
guitar is played normally, exciting the strings as a guitarist
would do. The strings’ frequencies then drive the guitar
body which is forced to go with the string frequencies and
radiates the sound into the surrounding air. Using these
forced oscillation patterns in analysis has the advantage, that
it contains all information about impedance, driving-point
dependency, radiation characteristics and radiation strength,
as well as it could give clues about the relation between the
geometry of the guitar and its acoustics behaviour.

Using a microphone array technique, the characteristics
of single guitars could successfully be associated with these
radiation patterns [9]. Also a formula the calculate the
Helmholtz for vihuelas with more than one soundhole was
found by including the radiation patterns as a weighting
function [8]. When forward-propagating these patterns into

the surrounding air, complex radiation characteristics can be
found, showing evanescent waves, beam-like radiation, or
highly complex patterns [10].

The paper is part of a large project building a software
for instrument builders to be able to construct guitars in the
computer and listen to their sounds before actually building
the instruments themselves. Within this project, 32 guitars
have been extensively measured. This paper considers a
small amount of seven of these guitars to approach the
problem and give first insights into the global picture. So
e.g. the eigenmodes mentioned above and discussed in the
paper extensively did not appear with most of the guitars
investigated. Indeed, they were only present with about one
third of the guitar sample.

2 Method
Seven guitars were placed in an unechoic chamber in

front of a microphone array consisting of 121 microphones
recording simultaneously with a sample frequency of 48
kHz each for two seconds. Each tone of the instrument was
plucked and its sound was recorded. All notes up to the
12th string were played on all six strings, resulting in a total
of 78 recordings of each guitar. From these recordings the
forced oscillation patterns were calculated. Additionally, the
eigenmodes of the guitar were measured by knocking on the
guitar bridge. In all cases the system was considered linear
in such a manner as a different driving strength of single
frequencies is not expected to change the forced oscillation
patterns on the guitar, or of its eigenvalues.

For calculating the forced oscillation patterns from
the plucked tones, for each tone all 121 recordings were
Fourier analysed, resulting in 121 complex spectra. For
each tone the fundamental frequency and the first 20 partial
frequencies were calculated using a Wavelet algorithm. As
Wavelets are able to zoom into the sound with arbitrarily
chosen frequencies, it was possible to calculate the precise
frequency of each partial with a precision of 10−3 Hz. This
precision is not audible, still it ensures very precise phase
calculations which are needed when back-propagating the
sound onto the guitar top plate. So from each tone for 20
partials, 121 complex amplitudes at the different microphone
positions were calculated.

From these complex amplitudes, distributed in space,
using a Minimum Energy Method (MEM) [7] the sound-
field was back-propagated onto the top plate of the guitar
resulting in the forced oscillation patterns.

Due to lack of space in this proceeding paper and as
we want to focus on interesting results below, the MEM
method is given here only very briefly (for details see [9]
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[10]). It is a multipole method, assuming as many poles
are microphones are present. The pressure p j

m at the j-th
microphone is assumed to be the sum of the pressures pi

g at
the N radiating points i weighted with a radiation matrix Ri j

0
connecting the radiation and microphone points like

p j
m =

N∑
i=1

pi
g Ri j

0 (1)

with radiation matrix

Ri j
0 =

1

Γ
i j
0

eıkri j
, (2)

for a single frequency with wave vector k, distances
between radiation and measurement points ri j and a
function representing the amplitude drop from radiation to
measurement point Γ

i j
0

Γ
i j
0 (α) = ri j(1 + α(1 − βi j)) . (3)

This is an ill-posed problem, where only small
measurement noise of any kind will lead to dramatically
wrong solutions immediately. To stabilize this, Γ depends on
α, a parameter changing the shape of the monopoles more or
less into cardioid shapes. When defining

βi j =|
ri j

‖ ri j ‖
· ni | , (4)

then, as Γ(r) = 1/r for normal radiation direction and
Γ(r) <= 1/r for all off-normal directions, α shapes the
monopole. For α = 0 it is a normal monopole, for α > 0
the monopole more and more becomes a beam assuming
focussed radiation into the normal direction. It can be shown
that with such a system, the real surface vibration can be
calculated by finding the α for which the reconstruction
energy is minimal. When increasing α only slightly above
the optimum value, the ill-posed problem in presence of
noise is avoided very robust by changing the results only
very slightly.

All measurements shown below have been performed
with a microphone array of 128 mics in an anechoic
chamber at the Institute of Musicology in Hamburg. Each
mic was recorded with a sampling frequency of 48 kHz
simultaneously to assure a high spatial and temporal
resolution capable to analyze musical transients as well. All
recordings were done in the near-field to cover evanescent
waves.

As all microphone-array methods of back-propagation
can only work if all source points are considered, the field
of back-propagation was also taking the air around the top
plate into consideration, as the radiation from the back plate
and sides are scattered around the instrument [6]. The same
method was applied for the eigenmodes, taking the sounds
from knocking on the top plate and finding the peaks in the
spectrum. These peaks were associated with the modes by
visualization of their eigenmode shapes.

3 Results
Among the many results derivable from the data, we

concentrate on the correlations between the first four
eigenmodes and the forced oscillation modes. These
eigenmodes are the Helmholtz (HH), the top plate monopole

mode (0,0), and two top plate dipole modes of left/right
split (1,0) and top/down split (0,1). The HH between the
seven guitars used here ranged from 99 Hz to 108 Hz, as
expected for normal classical guitars. The monopole mode
ranged from 180 Hz to 223 Hz with a mean of 212 Hz. The
(1,0) mode had frequencies between 252 Hz and 299 Hz,
still there were two guitars around 300 Hz and five guitars
around 250/260 Hz. The (0,1) mode ranged from 347 Hz to
440 Hz and so was very wide spread, with many possible
values in between.

3.1 Correlations between eigenmodes
First the correlations between the eigenmodes are

considered. In Tab. 1 these correlations between the first
four eigenmodes are shown, correlating the absolute values
(phase correlations discussed below). The values are mean
and standard deviation for seven guitars. Strong correlations
appear between the Helmholtz (HH) and modes (0,0) as well
as (0,1). The reason is mainly the strong radiation from the
soundhole present also with the (0,0) and (0,1) modes. Also,
the HH mode has some monopole radiation from the top
plate, as the energy in the HH is supplied from the string
via bridge and top plate to the inclosed air. Therefore, the
top plate must vibrate a bit also with the HH mode. The
dipole mode (1,0), which is the left/right split on the top
plate correlates least with the HH, as expected. Indeed,
within the low frequency range there is a monopole and a
dipole radiation pattern. Still both correlate strongly, too, the
(1,0) dipole mode correlates with the (0,0) monopole with
0.57. As the (1,0) mode is not radiating via the soundhole
too much, this correlation is caused by asymmetries of both
modes. Also a strong correlation between the two dipole
modes (1,0) and (0,1), the up/down split of the top plate
with a correlation of 0.57 is present, too. All combinations
show low standard deviations, indeed the values do not
change considerable according to the top plate geometry.
Also the frequencies of the modes do not influence the
correlations considerably. Although all guitars have the HH
frequency around 100 Hz as usual, the dipole frequency may
be between 250 Hz to 300 Hz, as discussed above.

First the correlations between the absolute values were
discussed, as the phase correlations differ considerably.
When looking at the modes visually, the HH, the monopole
and the dipole patterns are clearly present. This is
represented by the absolute values. Still the picture changes
when the phases are considered. In Tab. 2 the correlations
between the modes, only using the phases are shown, again
mean and standard deviations for the seven guitars. The
mean correlations are very low all through. Still the standard
deviations are very high. E.g. the HH / (0,0) monopole
correlation is 0.12, while its SD is 0.302, nearly three times
higher. Another example is the (0,0) / (0,1) correlation of
0.09 mean with a SD of 0.17.

So although the modes look like regular monopole and
dipole modes when examined visually or using the absolute
values, still their phase relations may be very complex and
deviating strongly between guitars.
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HH (0,0) (1,0) (0,1)

HH 1 (0) 0.82 (0.062) 0.22 (0.082) 0.60 (0.091)

(0,0) 1 (0) 0.56 (0.048) 0.77 (0.083)

(1,0) 1 (0) 0.57 (0.050)

(0,1) 1(0)

Table 1: Mean and (standard deviations) for mode
correlation of the absolute values between guitar

eigenmodes for seven classical guitars.

HH (0,0) (1,0) (0,1)
HH 1 (0) 0.12 (0.302) 0.06 (0.074) -0.02 (0.100)
(0,0) 1 (0) 0.10 (0.118) 0.05 (0.170)
(1,0) 1 (0) 0.09 (0.114)
(0,1) 1(0)

Table 2: Mean and (standard deviations) for mode
correlation of the phases between guitar eigenmodes for

seven classical guitars.

3.2 Correlations between eigenmodes and
forced oscillation patterns

The same picture as with the correlations of the
eigenmodes appear when examining the correlations
between the eigenmodes and the forced oscillation patterns.
In Fig. 1 the correlations between the (1,0) dipole mode
and the forced oscillation patterns of all 78 notes played on
the guitar up to the 12th string using the first partial of the
tones respectively are plotted sorted by frequency. Again,
the correlations between the absolute values only (blue) and
the phases only (red) are displayed. As the eigenvalues may
be in any phase relation to the forced oscillations, for each
forced oscillation pattern separately, the eigenmode shape is
circled around 2 π and the highest correlation is used in the
plot. This is done for four guitars, the two upper ones have
the dipole around 250 Hz, while the two lower ones have the
dipole around 300 Hz. The black vertical lines in the figures
indicate the position of the eigenmodes, from left to right:
HH, (0,0), (1,0), (0,1).

When taking the first guitar, the Admira Cordoba on the
top of the plot for the absolute values, the forced oscillation
patterns correlation with the dipole eigenmode clearly peak
at the position of the dipole. Although this correlation
is increasing up to the (1,0) mode frequency, it is not
considerably decreasing to higher frequencies. This means
that even higher forced patterns have a strong correlation
with this dipole. Also the increase starts quite early between
the HH and the (0,0) mode. Therefore, the theoretical
expectation of the forced patterns having a single resonance
at the dipole is not appearing here. It may be present for
the lower frequency, it fails for higher ones. The zig-zag
behaviour for higher frequencies is discussed below. This
peak at (1,0) is present with all guitars, also the increase
from lower frequencies to the (1,0) peak. Still the two lower
guitars, Ramirez and Hense, have a second peak around

Figure 1: Correlations between eigenmode (1,0) and forced
oscillation patterns for four guitars for all notes played on
all six strings up to the 1212 fret, only first partial of each
tone used. The plot shows the correlations between the

absolute values only (blue) and the phases only (red). The
black vertical lines indicate the position of the eigenmodes,

from left to right: HH, (0,0), (1,0), (0,1).
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Figure 2: Correlations between the Helmholtz eigenmode
and all forced oscillations of played notes, first partial

separated by strings, so each line has 13 points, according to
13 notes played from the open string to the 1212 fret. The

black vertical lines indicate the position of the eigenmodes,
from left to right: HH, (0,0), (1,0), (0,1).

Figure 3: Correlations between the (1,0) dipole eigenmode
and all forced oscillations of played notes, first partial

separated by strings, so each line has 13 points, according to
13 notes played from the open string to the 1212 fret. The

black vertical lines indicate the position of the eigenmodes,
from left to right: HH, (0,0), (1,0), (0,1).

ISMA 2014, Le Mans, France

223



the (0,0) mode, again showing a correlation between these
modes. As discussed above, this may be caused by slightly
asymmetrical modes shapes, which are present with nearly
all guitars. That this peak appear with the two guitars of a
higher (1,0) mode may be caused by the higher frequency of
the (0,0) mode with these guitars compared to the the two
upper ones with a (1,0) eigenmode frequency around 250
Hz.

Now considering the phases of the forced oscillation
patterns, the correlations are again mostly much lower and
show very different patterns. Basically, the guitars with (1,0)
mode eigenfrequency around 250 Hz have a much smoother
phase correlations compared to the ones where the (1,0)
frequency is around 300 Hz. The reason for this behaviour
is not known. The Hoefner guitar is the only showing a
clear peak of the phases at (1,0), too. Still it is interesting
to see that this peak is a bit higher than the actual dipole
eigenmode. Indeed, both correlations, with the absolute and
the phases are considerably low right before the eigenvalue,
where the forced oscillation pattern changes tremendously.

3.3 Dependency on driving point
In Fig. 1 above the (1,0) resonance frequency the

correlations of the absolute values often show a zig-zag
pattern. To examine this closer, the correlations are separated
by the six strings. As all notes on the strings up to the 12th

fret are present, in Fig. 3 each single line consists of
13 frequency points. Here only the correlations of the
absolute values are shown for the sake of clarity. Again
three different guitars are taken as examples. Examining the
correlations around the (1,0) peak, the different strings show
consistent correlation changes within themselves. These
correlations often differ considerably between the strings.
The audibility of this differences are discussed below. So
e.g. the Ramirez guitar in Fig. 3 shows differences above
the (1,0) resonance. The mangenta line of the high e-string
has higher correlations than the blue line of the b-string,
which is again higher in correlation compared to the green
line of the g-string. With the Admira guitar in the middle
figure this also is very evident for the correlations around
the (0,1) mode frequency. Also the Hense guitar shows
strong differences between the string correlations above
(1,0) consistent within the single strings. It is also interesting
to see that the correlations between the strings are perfectly
the same for lower frequencies around 100 Hz.

To show another example of the dependency of strings
upon the driving point, as well as consistency within strings,
the correlations of the forced patterns with the Helmholtz
(HH) are shown in Fig. 2. Here it is interesting to see
that the Ramirez guitar has a difference even around the
HH resonance between the lowest E-string (blue) and the
A-string (red). This does not appear with the other two
guitars. On the other side, the Ramirez has much higher
string consistency all through the frequency range compared
to the Hoefner HF 16 guitar at the bottom, where driving
point differences are very strong for frequencies above the
(1,0) resonance.

Note that the correlations shown in Fig. 3 and Fig. 2
are taken from the absolute values. According to the theory
of forced vibrations [12] the shape of a forced oscillation
pattern does not change with the driving point, only its
maximum amplitude. This is not met with the results from

the guitars investigated here and therefore the standard
theory of forced oscillations need to be revised, which is
beyond the scope of this paper.

3.4 Radiation strength of same frequency on
different strings

To estimate if the differences in radiation patterns of the
top plate for one common frequency played on different
strings are audible to a listener, as an example the note c
was used with its fundamental partial at about 250 Hz with
the 03 Cordoba guitar. This note can be played on the 10th

fret of the D-string, the 5th fret of the g-string, or the 1st

fret of the b-string. The Cordoba guitar was used as its
dipole eigenfrequency mode (1,0) is at 253.4 Hz and so very
close to the forcing frequencies. Again, for these three notes
only the first partial was used, so three radiation patterns
are compared. The radiation patterns of these strings differ,
as can be seen in Fig. 3 for the 09 Admira Cordoba guitar
(middle plot) at the dipole mode (1,0) frequency of about
250 Hz (third vertical line from left).

Radiation strength of guitars is important under several
conditions, either the guitar is recorded in the near-field at at
distance of about 10 cm in front of the top plate (at several
possible positions), or recorded at a larger distance of about
1 m to allow a stronger amount of room reverberation to be
on the recording. On the other side, a close audience at about
3 m and a distant one at about 10 m are considered. For all
four cases, the pressures of all three modes are calculated on
a plane in those distances. The plane width and hight were
altered, for the .1 m and 1 m case a 1 m x 1 m plane was
used and for the 3 m and 10 m distance a 3 m x 3 m plane
was calculated with a grid of 11 x 11 positions in all cases.
From these pressure values at the four planes the differences
in pressure between the three modes were calculated in dB.

Tab. 3 show the maximum, minimum, and mean pressure
differences for the three combinations. The highest value
of 12.8 dB is at a distance of 1 m between the d- and the
g-string. Here, the mean is 6.1 dB, which is clearly audible.
On the other hand, there may be no differences found at all,
like for the 3 m distance between all combinations, although
a mean is present. As expected, the 10 m distance shows
least differences. Surprisingly, the .1 m distance has less
differences than the 1 m case, so the near-field patterns of the
three radiation patterns are more similar than at the medium
distance of 1 m. Overall we find a strong dependency of
radiation strength between distance and mode shapes with
strong variations. Many differences are audible, even at
larger distances. This is a strong indication, that the driving
point of forced oscillations at the same frequency may result
in strong loudness differences in radiation.

3.5 Conclusions
Many unexpected results appear when examining not

only the eigenvalues of guitars but also the forced oscillation
patterns.

• The eigenmodes of classical guitars are not
orthonormal one to another.

• The basic eigenmode shapes are consistent between
guitars.
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Relation (dB) d-string (249.0 Hz) vs. d-string (249.0 Hz) vs. g-string (249.4 Hz) vs.

max (min) [mean] g-string (249.4 Hz) b-string (251.0 Hz) b-string (251.0 Hz)

close micing, 10 cm 6.5 (1.6) [3.0] 6.8 (0.0) [4.8] 4.3 (0.0) [1.9]

distant micing, 1 m 12.8 (1.8) [6.1] 10.9 (0.0) [3.9] 4.0 (0.7) [2.4]

close audience, 3 m 8.1 (0.0) [2.0] 5.8 (0.0) [2.3] 5.6 (0.0) [2.1]

distant audience, 10 m 2.7 (0.2) [1.4] 3.8 (0.8) [2.2] 4.1 (2.9) [3.6]

Table 3: Comparison of radiation strength in dB, maximum (minimum) [mean], between three forced oscillation patterns at
nearly the same frequency around 250 Hz of the note c at three different strings and four distances from the guitar. 121

pressures are calculated at a plane at distances .1 m, 1 m, 3 m, and 10 m in front of the top plate with plane width and hight 1x1
m, 1x1 m, 3x3 m, and 3x3 m respectively. Maximum, minimum and mean are calculated from the 121 values on the plane.

• The phase relations between the eigenmodes are very
different between guitars.

• The correlations between the eigenmodes and the
forced oscillation patterns peak at the eigenmodes
frequencies but have large correlations in other
frequency regions, too.

• The forced oscillation patterns differ depending on the
driving point (strings).

• The radiation strength of forced patterns of different
string driving points for the same frequency may be up
to 10 dB or more, even in larger distances.

• The different strings show consistent correlation
behaviour within themselves.

Therefore the standard resonance theory cannot be
applied to classical guitars. Because of the strong mode
correlations mode coupling may be expected within the
guitar body. Also the differences in the forced oscillation
patterns between strings of the same frequency call for a
revision of the forced oscillation theory, which expects the
amplitudes of the patterns to differ, but not their basic shape.
Overall, the guitar body need to be considered as a much
more active part of tone production and not only as a passive
resonator.
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