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ABSTRACT
A one dimensional wave equation of an infinite flattened tyre belt is generated. The belt vibration is
controlled by bending, tension, shear and the sidewall stiffness. The dispersion relations for two waves in
the belt are calculated and used to find both the input impedance and attenuation on a tyre belt of infinite
extent. Tension and the sidewall controls the deformation and stiffness below 100 Hz. Waves propagate
around the belt above this frequency. The wave speeds due to bending and shear were predicted and
measured. The model presented here should be valid for the prediction of tyre response above about 400
Hz when for a car tyre the modal behaviour is observed to cease. In this high frequency region the tyre
at the input appears to be of infinite extent.

1 - INTRODUCTION
The intention here is to present a wave model of the tyre in which an equation of motion is satisfied by a
set of waves. The model is therefore not so restricted by: high frequencies, heavy damping or frequency
dependent material properties as previous rigid ring or modal models [1,2]. The tyre belt is represented
as a tensioned Timoshenko beam upon an arbitrary sidewall impedance which means that the upper
frequency is limited by the resonances across the belt depth. In practical terms this limit would be the
first shear resonance of the tread blocks.. The tyre is flattened like a snake skin and is of infinite extent
in the direction of the belt. This approach is thought to be most appropriate at high frequencies when
the damping inhibits modal behaviour and the sound radiation is most significant from the vibration
local to the contact patch. The result is only valid above the ring frequency of the tyre.

Figure 1: Belt and sidewall model.

2 - THE TYRE MODEL
The tyre dynamics are described by a one dimensional wave equation. The belt is modelled as a Timo-
shenko beam to accommodate bending, shear and the rotary inertia effects that are significant at high
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frequencies. The equations of equilibrium also include the axial tension caused by the air pressure and
the in built prestress. The sidewall is represented as a line impedance in the direction of the tyre circum-
ference, indicated in Figure 1 as the y direction. The controlling parameters of belt bending stiffness,
mass, tension, shear stiffness, rotary inertia and sidewall impedance are represented in non dimensional
form. The dispersion curves relating wavenumbers to the frequency are obtained from the solution to
the wave equation. These wavenumbers are substituted back into the equations of equilibrium to give
the relative amplitudes of wavetypes and the transfer functions around the belt.
Consider a section of an infinite Timoshenko beam under tension along the x -direction shown in Figure
2.

Figure 2: Forces on a section of the belt element in the x -direction.

The tension per width in the beam in the axial direction is denoted by Nx. M and Q are the bending
moments and shear forces per unit width acting on the belt section. Nx can be written as

Nx = σxh (1)

where h is the beam thickness and σx is the mean axial stress across the section. The bending moment
M can be found by integrating the axial stress σx weighted by z the distance from the section neutral
axis, the belt of thickness h is assumed to be symmetric about the neutral axis:

M =
∫ h/2

−h/2

σzzdz = −Bx
∂2w

∂x2
(2)

where Bx is the bending stiffness/width. The out of plane displacement w is given by the equation of
vertical equilibrium

∂Q

∂x
+ Nx

∂2w

∂x2
= µxẅ +

Zsẇ

b
(3)

where µx is the mass/area of the belt. Rotational equilibrium of the bending moments and shear stresses
yield

Q− ∂M

∂x
= ρlβ̈ (4)

where ρlx is the rotary inertia/unit width and βx is the rotation angle due to bending. The total rotation
of the belt element is the sum of the shear angle αx plus the rotation angle βx i.e.,

∂w

∂x
= α + β (5)
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The bending moment M is related to the bending angle via equation (2):

M = −Bx
∂β

∂x
(6)

Similarly the shear force Q is related to the shear angle by

Q = Sxαx (7)

where Sx is the shear stiffness of the belt/width. For a shear modulus G, Sx=Gh. If the above equations
(1-7) are combined and a harmonic solution of the form eiωt is applied the fourth order differential
equation of motion is obtained:

−∂4w

∂x4
(1 + Φ) +

∂2w

∂x2

(
χ− (1 + Φ) k2

cx − k2
sx

)
+

(
k4

bx − k2
sxk2

cx −
iωZs

bBx

)
w = 0 (8)

Further simplification of equation (8) is achieved using the following normalised parameters to describe
the tension contribution:

Φ =
Nx

Sx
X =

Nx

Bx

and also the wavenumbers for the four possible propagating waves. The associated deformation patterns
are given in Figure 3. For the tension wave the wavenumber ktx is defined in equation 9. This is the
wave mechanism of a guitar string in which the restoring force for lateral displacements arises from the
tension.

k2
tx =

ω2µx

Nx
, k4

bx =
ω2µx

Bx
, k2

sx =
ω2µx

Sx
, k2

cx =
ω2ρIx

Bx

(9)

The wavenumber kbx for bending waves is defined in equation 9, the associated deformation pattern is
seen in Figure 3a. The wavenumber ksx and deformation pattern of shear waves is shown in equation 9
and Figure 3b respectively.

Figure 3: (a) bending waves, (b) shear waves, (c) rotational waves.

Figure 3c displays the deformation pattern for a wave which is described here as ’rotational’; and can
be seen to be a degenerate bending wave, as there is stretching and compression above and below the
neutral axis without the out of plane displacement. The wavenumber kcx is a function of bending
stiffness Bx and second moment of area Ix. The mass of the beam section does not appear directly which
indicates that there is no section translation in this wave as with longitudinal, shear, and bending waves.
This wave has the possibility of propagating within the tyre contact patch where out of plane motion is
constrained, and so it may be associated with dynamic phenomena such as tyre squeal.
Substituting the solution w = We−ikx for equation 8 gives the wavenumber polynomial:

k4 (1 + Φ) + k2
(
χ− (1 + Φ) k2

cx − k2
sx

)
+

(
k4

bx − k2
sxk2

cx −
iωZs

bBx

)
= 0 (10)
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This is a quadratic in k2, the solution obtained using a MATLAB program therefore, produces two
wavenumber pairs at each frequency. Each wavenumber has a real and imaginary part describing the
direction, wavelength and attenuation. The real wavenumbers of a particular belt [3] is shown in Figure
5.

Figure 4: Forces on belt element.

Figure 5: Dispersion curve for a tyre belt on a sidewall, real wavenumbers.

3 - BELT INPUT MOBILITY
If the power input to a tyre belt is required it is necessary to find the input mobility at the input at x=0.
This is obtained by applying a unit normal force/width F and calculating the associated velocity. The
two wavenumbers are found at each frequency then are substituted back into the equations of equilibrium
to give the relative wave amplitudes. The absolute amplitudes depend upon the boundary conditions
at x = 0. For the case considered here a line force/width Feiωt is applied, and there is a zero slope
condition from the symmetry.
By taking a symmetrical section half the normal force on the beam produces a shear force/width, Qx

and a tensile force/width Nx as seen in Figure 4. The angle θ shown in Figure 4 is composed of two parts
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described in equation (5); the shear angle αx and the rotation angle βx. Equation (5) can be written
and expanded as

αx =
∑

p=1,2

αpxe−ikpx, βx =
∑

p=1,2

βpxe−ikpx
(11)

The subscript p denotes a particular wave branch of the dispersion curves corresponding to an axial
wavenumber kp. The shear force causes shear and bending therefore from equations (4), (5) (6) and the
boundary conditions yields the out of plane velocity ẇ at any point on an infinite belt:

ẇ =
ωF

2 (Sx + Nx) (k2
1 − k2

2)

{
1
k1

[(
k2
1 − k2

cx

)
+

Sx

Bx

]
− 1

k2

[(
k2
2 − k2

cx

)
+

Sx

Bx

]}
(12)

The input mobility modulus, found by setting x = 0, using the wavenumbers of Figure 5 is plotted
in Figure 6. Below 100 Hz the sidewall stiffness dominates and there is only deformation local to the
contact. At about 100 Hz there is the rigid body belt resonance of the belt upon the sidewall. Above
this frequency there is the propagation around the belt of a tension-bending wave until 2 KHz. This
wave converts to a shear wave and the rotational wave cuts on around this region. There is very heavy
attenuation which would, on a finite tyre, prevent the formation of standing waves above 500 Hz. The
tyre behaves as if it is of infinite extent above this frequency.

Figure 6: Input mobility modulus for an infinite tyre belt on a sidewall.

4 - CONCLUSIONS
A wave model for a tyre belt was made for one dimensional waves on a flat belt. The model included
bending, tension, shear and rotary inertia. Sidewalls can be modelled with some detail, but here the are
treated only as a simple stiffness. Resonant behaviour of the belt does not seem significant above 500
Hz when the sound radiation begins to increase, suggesting that this infinite model could be adequate
for radiation calculations.
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2. Böhm, F., Mechanik des Gurtelreifens, Ing. -Arch., Vol. 35, pp. 82-103, 1966



Copyright SFA - InterNoise 2000 6

3. Smets, K., Vibration and wave type recognition in automotive tyres, M.s.c. thesis, University of
Southampton, 1995


