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ABSTRACT
A method is shown whereby non-axis-symmetric acoustic fields from axis-symmetric geometries can be
calculated very efficiently. The method is a hybrid of the method of Juhl [1], which uses elliptic integrals
and the method of Kuijpers et al [2], which uses FFT and is much faster than both. This has been
implemented in a Matlab c© program and three test cases illustrate that the method works even at high
frequencies. The Matlab c© source code is freely available from http://www.dat.dtu.dk/∼openbem/.

1 - BACKGROUND AND THEORY
The boundary element method is a useful tool for predicting sound fields governed by Helmholtz equation.
It can however be quite demanding with respect to computation time and computer memory size. If the
geometry of the problem is axis-symmetric, one can take advantage of special axis-symmetric formulations
(e.g. Juhl [3]), which only require the generator of the axis-symmetric geometry to be discretised. This
requires much less memory and also saves computation time. Non-axis-symmetric fields are handled by
expanding the acoustic variables into a Fourier series, e.g.

φ (r, z, θ) =
∑
m

φm (r, z) eimθ
(1)

where (r,z, θ) are the usual cylindrical co-ordinates, i is the imaginary unit and m is an integer. Note
that in this paper, expanding into a Fourier series has nothing to do with the time-
frequency domain transformation! It can be shown that if the surface impedance is axis-symmetric
the Helmholtz integral equations decouple so that each term can be calculated independently of the
others and finally the total solution can be obtained as the sum of the individual solutions.
Among other things, finding the solution requires evaluation of the following two integrals:
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where k is the wave number, R is the distance from the running integration point to the collocation
point and n is the unit vector normal to the surface. It is the efficient and accurate evaluation of these
integrals that are the topic of this paper.
Due to the analytical complexity of these integrals, numerical integration is popular and has been reported
to give good results (e.g. Kuijpers et al [2]). In the same paper, the authors show that (by using FFT)
the computation time required to evaluate the integrals for all m-values simultaneously is not much larger
than the computation time required for just one value of m. Since one very often needs 10 or more m-
values, this is a substantial saving. The price (not mentioned in the paper) however is that the boundary
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element matrices must be stored for all m-values simultaneously, so the method effectively reduces the
computation time by a factor of 10, but increases the memory required by a factor 10. Fortunately, the
extra memory space required is easily stored on disk (if necessary) without any significant increase in
computation time.
The method of Kuijpers et al [2] is simple, but the authors of the present paper have poor experience
with it. This is because both integrals become singular when R → 0, and numerical integration therefore
requires closely spaced integration points near singularities in order to achieve acceptable accuracy.
Ideally one would vary the spacing of integration points accordingly, but FFT requires evenly spaced
integration points and therefore forces the use of many more points than are strictly necessary. The extra
computation time due to the added number of points very easily exceeds the computation time saved by
using FFT. Furthermore, the computation time required is very sensitive to practical implementation,
but even for optimum implementation it is unlikely that the high frequency examples discussed later in
this paper could have been practically calculated with the method of Kuijpers et al [2].
Some years earlier, Soenarko [4] and Juhl [1] simultaneously suggested a different approach: The first
integral in Equation (2) can be split up as follows:
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The last term will be referred to as the oscillating part because the integrand is non-singular and oscil-
lating w.r.t. R (θ). It is easily integrated numerically. The other term on the right hand side will be
referred to as the singular part because the integrand has a singularity at R (θ) = 0 and is non-oscillating
w.r.t R (θ). This part can be integrated analytically using elliptic integrals. A similar method is used
for the second integral in Equation (2).
Although not mentioned in References [1] and [4], the method of Kuijpers et al [2] is very easily (without
the drawbacks mentioned above) applied to the oscillating part of the integral resulting in large reductions
in computation time. Furthermore, the analytical integration for the singular part is recursive in m,
allowing similar savings in computation time if all the m-values are handled simultaneously.
Unfortunately, when implemented computationally, the analytical integration of the singular part is very
sensitive to round off errors and the straight forward implementation easily breaks down for double
precision arithmetic when m>6. Practical implementation is therefore slightly more complicated than
the description in Reference [1]: More examination reveals that it is only when the integrand in the
singular part is far from being singular that the analytical integration breaks down for m>6. When the
integrand is very close to being singular, analytical evaluation works up to m=23 with double precision
arithmetic. The solution has therefore been to use numerical integration when the integrand is far from
singular and only use the analytical integration when the integrand is close to being singular. When
m>23 however, this too breaks down. The solution method chosen for this case was an empirical formula
that was developed to fit for m>20, but it must be stressed that for many practical applications, m<24
suffices. Due to space considerations, details of this method have been omitted here, but can be seen in
the Matlab c© implementation which is freely available from http://www.dat.dtu.dk/∼openbem/.

2 - TEST CASES
Three test cases are used. All are scattering of a plane wave by a sphere at ka=40, where a is the
radius of the sphere. In all cases the surface is locally reacting with a constant nominal admittance (i.e.
normalised wrt. 1/ρc); the three values of nominal admittance used are 0, 1 and i. The solution for
each test case is obtained in two ways: firstly by calculating the problem as a completely axis-symmetric
problem (m=0) and secondly by treating the problem as an axis-symmetric geometry with a non-axis-
symmetric incoming field (i.e. the incoming plane wave travels in a direction perpendicular to the axis
of rotational symmetry of the geometry). In all cases, 80 quadratic elements are used and 25 randomly
placed CHIEF points.
Figures 1, 3 and 5 show the modulus and real and imaginary parts of the solution on the surface of the
respective spheres. There is clearly very good agreement between the two calculation methods. This
was also found to be the case at lower frequencies. Figures 2, 4 and 6 show the modulus of the Fourier
coefficients (see Equation (1)). Naturally these also show very good agreement, although a small error is
apparent at certain m-values. This error is most apparent when nominal acoustic admittance is i, which
also proved to be the test case that was most sensitive with respect to the above mentioned empirical
formula.

3 - CONCLUSIONS
A method for calculating non-axis-symmetric sound fields from axis-symmetric bodies has been presented.
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Figure 1: Solution on surface of sphere with nominal admittance 0; non-axis symmetric solution,
¨¨¨ axis-symmetric solution.

The method is a refinement of the method previously published by Juhl [1], using a technique from
Kuijpers et al [2] as well as some new ideas to improve performance at high frequencies and high Fourier
order. The resulting method is superior with respect to both computation time and practical accuracy.
This is illustrated with some examples, where it is found that purely imaginary admittances can be
significantly more difficult to handle than other boundary conditions. Never the less, the improved
method performs very well also in this case.
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Figure 2: Harmonics of solution from Figure 1; non-axis symmetric solution, ¨¨¨ axis-symmetric
solution.
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Figure 3: Solution on surface of sphere with nominal admittance 1; non-axis symmetric solution,
¨¨¨ axis-symmetric solution.
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Figure 4: Harmonics of solution from Figure 3; non-axis symmetric solution, ¨¨¨ axis-symmetric
solution.
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Figure 5: Solution on surface of sphere with nominal admittance i ; non-axis symmetric solution,
¨¨¨ axis-symmetric solution.
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Figure 6: Harmonics of solution from Figure 5; non-axis symmetric solution, ¨¨¨ axis-symmetric
solution.


