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ABSTRACT
A new two-parameter cell model is developed to predict the acoustical properties of fibrous absorbents
with fibres oriented normal to the sound propagation direction. The expressions for dynamic drag
parameters are derived for monodisperse as well as for polydisperse arrays. A relationship between
complex density and complex compressibility has been obtained. The model gives good agreement with
acoustical data if measured values of permeability and porosity are used.

1 - INTRODUCTION
Tarnow [1], [2] has used a cell model to calculate acoustical characteristics of fibrous absorbents. The cell
model approach has been used frequently to predict acoustical properties of concentrated suspensions.
In our previous work [3], the cell model approach was used to predict the acoustical properties of a
stack of solid spheres. The Kuwabara cell model [4] was modified to match the cell volume averaged
fluid velocity in the direction of flow with the macroscopic flow velocity. To give accurate agreement
between cell model predictions, data and numerical results, it was found necessary to use an adjustable
cell radius. Here the same approach is used to model air filled fibrous materials.
If the fibre density and heat capacity significantly exceed those of air then the complex density and
compressibility depend on the drag term D (ω) and heat transfer term SH (ω) respectively:
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where ρ0, T 0, α and cp are fluid density, temperature, the volume thermal expansion coefficient and heat
capacity at constant pressure, φ is the porosity.

2 - THE CELL MODEL EXPRESSION FOR THE COMPLEX DENSITY
In an oscillatory flow of incompressible viscous fluid with macroscopic fluid velocity ~u0e

−iωt normal to a
fixed cylindrical fibre, the fluid velocity field around this fibre can be represented by:

~v = ~uo − | ~u0| curl~a

where ~a is a vector potential.
As has been shown [1], the vector potential has only a z -component (in cylindrical coordinates), ~a =
a (r) sinΘ~ez. The function ξ = ∂ra +

a

r
obeys the following equation

∂r

[(
∂rr +

∂r

r

)
ξ − ωρ0

iη
ξ

]
= 0 (2)

The boundary conditions for ξ are derived from non-slip boundary conditions at the fibre surface and a
condition of zero vorticity on the outer cell boundary:
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ξ|R = 2, ∂rξ|b = 0 (3)

Also boundary conditions for potential a(r) are used:

a

r

∣∣∣
R

= 1, ∂ra|R = 1 (4)

An additional boundary condition for the potential function a(r) on the outer cell boundary,

a
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b

=
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= Ψ (5)

results from matching the macroscopic fluid velocity and cell volume averaged fluid velocity:

〈ux〉 =
1

π (b2 −R2)

∫ 2π

0

∫ b

R

(urcosΘ− uΘsinΘ) rdrdΘ = u0

[
1− a|b b−R2

b2 −R2

]
= u0

In our cell model for a stack of spheres, the parameter Ψ was considered to be adjustable since it
accounted for the effect of contacts between adjacent particles. In fibrous materials with high values of
porosity, this effect should not be important. Consequently, in the following comparisons, it is assumed
that Ψ = 1 − φ. However, we do not exclude the possibility that it might be an adjustable parameter
for more dense arrays of cylinders. For this reason, the parameter Ψ appears explicitly in the analytical
results.
The drag term, D, is calculated as a sum of viscous forces acting on individual fibres:
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where p is the pressure and σrΘ is the component of the stress tensor.
Solving equation (2) with boundary conditions (3)-(5) we get:

D (ω) = −iωρ0 (1− φ)
(2Ψ− 4) Z1 (kR) + (1−Ψ) Z0 (kR)
2ΨZ1 (kR) + (1−Ψ) Z0 (kR) (kR)

(6)

where
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J 0,1 and Y 0,1 are Bessel functions.

3 - CELL MODEL RESULTS FOR DYNAMIC DRAG PARAMETERS
The drag parameters i.e. dc permeability k0, characteristic viscous dimension Λ and tortuosity α can be
calculated from low- and high- frequency limits of the complex density [5]:
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The low frequency limit of complex density gives:
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(−3 + 4Ψ−Ψ2 − 2lnΨ
)
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R2 (7)

This expression coincides with that obtained by Tarnow [1] (note that kTarnow = ko/φ). Using Hankel’s
asymptotic expansions for Bessel functions of large arguments, it is possible to extract expressions for
tortuosity and characteristic viscous dimension from the high frequency limit of complex density. Hence

α∞ =
1
φ

, Λ =
1−Ψ

2 (1− φ)
R (8)

As shown in Fig. 1, the agreement between numerical results for a regular array [6] and our cell model
predictions for dc permeability is good over a wide range of porosity. However, as has been shown [1],
the predicted values of permeability are significantly lower than measured values in glass wool.
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The new cell model results for drag parameters can be extended to materials with non-identical fibres. If a
log-normal distribution function p(r) for fibre radius is adopted, the drag parameters of the polydisperse
array kp

0 , Λp and αp
∞ are connected with corresponding characteristics of the monodisperse array in the

following way:
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where σ is standard deviation.
The dc permeability in a polydisperse fibrous material is higher and characteristic viscous dimension is
lower than for monodisperse materials. The value of tortuosity remains the same.

Figure 1: Comparisons between cell model predictions for normalised dc permeability and the
numerical results for regular array [6].

4 - THE RELATIONSHIP BETWEEN THE COMPLEX DENSITY AND THE COM-
PLEX COMPRESSIBILITY IN A FIBROUS MATERIAL
Now we consider a heat transfer from a fibre subject to oscillating temperature T1e

−iωt in the surrounding
fluid. The amplitude of the dimensionless temperature distribution T (r) in the fluid can be found from
the equation of heat transfer

∆rT − ωNprρ0

iη
T = 0 (10)

In the ’mirror approximation’ [7], the boundary conditions on the fibre surface and cell boundary are:

T |R = 1, ∂rT |b = 0 (11)

An expression for the heat transfer term is [8]:

SH = −2 (1− φ) k
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From the symmetry of problems (10)-(11) and (2)-(3) it is possible to find a relationship between func-
tion ξ and dimensionless temperature. It gives the relationship between drag term D (ω) and heat
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transfer term SH (ω), which leads to the following relationship between complex density and complex
compressibility:

C (ω) =
(

∂ρ

∂p

)

T

1
ρ0


1− α2T0

cp

(
∂ρ
∂p

)
T

F (ωNpr)


 , F (ω) = 1 +

1−Ψ
2

[
ρ (ω)
ρ0

− 1
φ

]
(12)

For materials with low density, the cell model requires knowledge of two parameters. As the model
underestimates permeability for real materials, we suggest rearrangement of the terms in the derived
expressions, to use the measured values of permeability and porosity [9]. In Fig. 2, the cell model
predictions for real and imaginary parts of wave number, using the measured porosity and flow resistivity,
are compared with data [10]. The agreement is quite good over the whole frequency range.
From (12), the following specific relationship between the viscous and thermal parameters of the empirical
model developed by Johnson, Allard, Lafarge et al [5], [11], [12] can be derived:

k
′
0 =

2
(1−Ψ)

k0, Λ′ =
2

(1−Ψ) α∞
Λ (13)

where Λ′ and k’ 0 are the characteristic thermal dimension and dc thermal permeability respectively. The
relationships between these parameters (i.e. k

′
0 = 2k0, Λ′ = 2Λ), derived elsewhere [11], do not include

tortuosity (it was supposed to be equal to 1). However for high porosity materials they give results
similar to (13).

Figure 2: Comparison between cell model predictions (solid lines) and data [10] for frequency
dependence of wave number. Data are for glass wool with density 16 kg/m3 and measured value flow

resistivity σ = η/k0=5500 Pa.s/m2; cell model predictions use the measured porosity and dc
permeability k0.

5 - CONCLUSION
The modified Kuwabara cell model approach [3] has been used to derive expressions for dynamic drag pa-
rameters of mono- and polydisperse fibrous materials with fibres oriented normally to sound propagation
direction. A new relationship between the complex density and compressibility has been derived. The
cell model leads to explicit relationships between viscous and thermal parameters for a fibrous material.
However, the model underestimates the permeability of a fibrous material in comparison with available
data. On the other hand, when measured values of permeability and porosity are used, the new cell
model gives good agreement with acoustical data. For these reasons, we suggest the use of the measured
values of permeability and porosity when making predictions with the cell model.
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