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ABSTRACT
The well known method of destructive interference can be used to attenuate the radiated sound power
of monopole sources. In a technical application nozzles are arranged equally spaced in a straight line.
Through each of these nozzles air is piped. The air stream is isochronous interrupted due to occluding
the nozzles using a mechanical device. So on the output of the nozzles an alteration of volume flux dq/dt
is expected. The sound power radiated is a function of these alterations. This behavior can be modeled
using a 1-dimensional monopole source array. In consequence to attenuate the radiated sound power
the method of destructive interference in the near field of the sources can be applied. In the case of
small distances between the adjacent elementary sources compared to the wave length of sound, a comb
function of sound power attenuation occurs.

1 - INTRODUCTION
Among others the effect of the destructive interference bases on the coherence of the so named primary
and secondary source. In many cases the acoustic manipulation of a given sound source, which can
be seen as primary source, is reached by introducing a secondary synthetically source consisting of a
loudspeaker and an electronic device. In the present case the sound sources concerned are coherent. So
the mentioned effect of destructive interference can be enabled by phase shift of the elementary sources.

2 - THE MODEL
In a technical application nozzles are arranged equally spaced by d in a straight line (Figure 1). Through
each of these nozzles air is piped. The air stream is isochronous interrupted due to occluding the
nozzles using a mechanical device (basic frequency fb=500 Hz). So the expected alteration of volume
flux dq/dt on the output of the nozzles can be assumed as an alternating quantity with stationary RMS
value. Furthermore the cross-section of the nozzles is small compared to the considered wave length.
Therefrom the volume flux can be seen as the strength qn of an acoustic monopole source.
In the frequency range the occurrence of a discrete spectrum with the spectral components fi = fb ·
i (i ∈ N) is expected, due to the periodical process in time domain.
In a distance r0 the point P is situated. The sound field of the point source array aforementioned can
be described by the superposition of the sound fields of the elementary sources m = 0, 1, 2,... n-1. Thus
to predict the complex sound pressure on the point P the well known formula
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can be applied.
Additionally in the far field of the array that is to say for points P in the region r0 À (n− 1) d the
simplifications:

• γm = γ0
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Figure 1: The geometry of the point source array.

• ∆rm = 0; for the description of the amplitude in (1): qm · jωρ

4π (r0 + ∆rm)

are brought in.
Now based on the fact of the coherence of the elementary sources and by use of a phase angle ωtv which
enables the enforcement of destructive interference the sound pressure at the distance r0 becomes:

p =
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The total sound power radiated can be found very easily by integrating the acoustic intensity I over
the surface S of a large sphere ( r0 À (n− 1) d) surrounding the sound source (premise: in the far field
~I ⊥ d~S):
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The sum in Eq. (2) can be treated as geometrical progression. Thereby the sound power is given by:
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3 - REDUCTION OF THE SOUND POWER RADIATED
The integrand in Eq. (4) is a periodic function with the period π. Strong main values of this function
occur when

[
kdsinγ − ωtv

2

]
= iπ, i ∈ Z (5)

The upper and the lower limit of the integration interval in Eq. (4) depends on the parameters d, c, ω
and tv. However the range of the interval is always ωd/c.
According to the aforementioned a reduction of the sound power occurs when the integration range lies
outside of the intervals
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m ∈ Z (6)

The shift of the integration range with respect to premise (6) can be enabled by the delay time tv.
But the reached change of the phase angel ωd/c is frequency-dependent. Consequently for the effective
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reduction of the total power radiated an optimization over the whole frequency range fi = fb · i (i ∈ N)
should be carried out.

4 - AN EXAMPLE
Figure 2 shows the reduction of radiated sound power by use of a time delay tv = 1.9 ms. The distance
d between the neighboring sources is 5 mm.
The function of the reduction of sound power is a comb function. As shown in Fig. 2 the width of the
main maxima rises by increasing the frequency. But the spectral components of the elementary sources
fi = fb · i (i ∈ N) are equally spaced. Accordingly for each quantity of tv spectral components which
are not reduced in sound power can be found.
In the most cases however the dominant part of the energy lies in the lower frequency range of the
exciting spectrum. That means by a known upper cut-off frequency of the dominant part of the energy
a value of the time delay tv should be chosen which enables the reduction of all spectral components
below the cut-off frequency.
The shown ”comb”-function (Fig. 2) reduces all the spectral components below 8 kHz. Furthermore
in the present case the significant part of energy of the exciting spectrum lies in the frequency range
beneath 8 kHz. Thus the total sound power radiated is strong decreased.

Figure 2: The reduction of sound power radiated by a point source array with linear phase shift
related to the radiated sound power of the array without an phase shift. The time delay of the

neighboring elementary sources is 1.9 ms.
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