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ABSTRACT
Excessive back scattering from periodic resonant absorbers has been modelled in a couple of ways in
the wave number domain. A drawback with the available approaches is that the corresponding equation
matrices are infinite and therefore have to be truncated in order to obtain a solution. In this paper the
approach is based on a periodical assumption and yields a closed formulation that can be solved in the
wave domain without truncation. It is possible to include an optional field at the backside of a periodic
absorber. Furthermore, it is possible to transform this solution back to the spatial domain and obtain
an exact formulation. The infinite series can then be expressed in closed form by utilising geometrical
series.

1 - INTRODUCTION
The effect on the sound field in front of resonant absorbers caused by periodicity of the structure, has
principally been modelled in two ways, both of which in the wave number domain. These models are
designed to account for the excessive back scattering which occur at frequencies above a limit, governed
by the proportions of the periodicity. Mechel modelled this phenomenon by expressing the pressure field
as a series of pressure amplitude components (Hartree Harmonics) in the wave number domain and then
solving the corresponding equation [1]. Takahashi [2] used a formulation similar to approaches used on
scattering problems in optics. Both of these approaches yield an equation system consisting of an infinite
set of components. The convergence rate for increasing number of included components is fast, but these
are nevertheless unsatisfactory approaches because the equation matrices have to be truncated. However,
it is possible to make use of an approach that has been used in e. g. structural acoustics by Mace in
his analysis of periodically stiffened fluid-loaded plates [3] and [4]. This approach is based on Floquet’s
principle, i.e. a periodical assumption, which combined with use of the Poisson summation formula yields
a closed formulation. Since the truncation can be suspended until the formulation is transformed back
to the spatial domain, the physical interpretation is more straightforward. But an advantage with even
more potential is that the resulting sums in several cases can be given a closed formulation.

2 - FORMULATION OF THE PROBLEM
In the following cases the basic ideas from Mace’s work are utilised. The first instance is the simple case
of infinite periodic slits. Consider an infinite plate lying in the plane y=0 (positive direction outward
from the surface) with infinite slits along the lines x=nl, in the z -direction, where n is integral. The
plate is backed by an air gap with depth d. The dependence of t, z are the same for all components and
thus the corresponding time dependence and any component in the z -direction is suppressed through
this work. The absorber is excited by a pressure which can be written as:

p
in

(x, y, z, t) = p0e
−i(kxx+kyy+kzz−ωt) ⇒ p

in
(x, y) = p0e

−i(kxx+kyy) (1)

due to the periodicity the pressure satisfy the periodic relationship (Floquet’s principle)

p (x + l, y) = p (x, y) e−ikxl (2)
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where the wave components are related by (angles according to standard spheric coordinates)




kx = ksinθcosϕ
ky = kcosθ
kz = ksinθsinϕ

⇒
{

kx = ksinθcosϕ
ky = kcosθ (3)

The resulting scattered field from the absorbent can be modelled as if it was emanating from periodic
sources

Ss (x, y) =
∞∑

n=−∞
Qs

nδ (x− nl) δ (y) (4)

The driving field is introduced in the Helmholtz equation for the scattered field

∆ps + k2ps = Ss (x, y) =
∞∑

n=−∞
Qs

nδ (x− nl) δ (y) (5)

In order to solve for the pressure dependence in the y-direction, p(y), the periodicity of the sources along
the x -axis is handled by a Fourier transform with respect to x. Hence

p̃in = 2πp0δ (α− kx) eikyy ∂(
−α2 +

∂2

∂y2
− k2

z

)
p̃s + k2

0 p̃s =
+∞∑

n=−∞
Qs

neiαnlδ (y) (6)

3 - OBTAINING A CLOSED FORMULATION
By introducing the Poisson summation formula

2πa

∞∑

k=−∞
f

(
2πk

a

)
=

∞∑
n=−∞

F (na) , a > 0 (7)

the infinite sum in equation (6) can be written as

∞∑
n=−∞

Qs
neiαnl =

∞∑
n=−∞

Qs
oe
−inl(kx−α) = Qs

o2π

∞∑
n=−∞

δ (2πn− l (kx − α)) (8)

and thus the Helmholtz equation becomes

∂2p̃s

∂y2
+

(
k2
0 − α2 − k2

z

)
︸ ︷︷ ︸

−β2

p̃s = Qs
o2π

∞∑
n=−∞

δ (2πn− l (kx − α)) δ (y) (9)

The solutions of the two superposed one-dimensional equations (on the one hand the incoming wave
together with the geometrically reflection and, on the other hand, the scattered field) can be calculated
with e.g. a Laplace transform





Geometrically reflected wave :
∂2p̃g

∂y2
− β2p̃g = 0

Scattered field :
∂2p̃s

∂y2
− β2p̃s = 2πQs

0

∞∑
n=−∞

δ (2πn− l (kx − α))

︸ ︷︷ ︸
D

δ (y) (10a)

⇒




Geometricall reflected wave (homogeneous solution) : p̃g = Be−βy + Ceβy

Scattered field (particular solution) : p̃s = −D

β2
sinh (βy)

(10b)

The boundary condition at y=0 for the geometrical reflection, i. e. at x 6= nL, is:
[
∂ (p̃in + p̃g)

∂y

]

y=0

= −β (B − C)− 2iπkyp0δ (α− kx) = 0 (11)
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Under the condition that the geometrically reflected wave is moving outward, i. e. C=0, the pressure
can be solved

B =
−2iπkyp0δ (α− kx)

β
(12)

The scattered wave will move in the positive y-direction and therefore the sinh-term has to be modified
in order not to increase to infinity.

p̃s =
D

2β2

(
eβy − e−βy

) ⇒ p̃s = −De−βy

2β2
(13)

The expression for the pressure can now be inversely transformed

p (x, y) =
−kyp0√

k2
0 − k2

x − k2
z︸ ︷︷ ︸

kys

exp i


kxx−

√
k2
0 − k2

x − k2
z︸ ︷︷ ︸

kys

y




+Qs
0

∞∑
n=−∞

1
l

exp




kxn︷ ︸︸ ︷(
kx − 2πn

l

)
x−

kyn︷ ︸︸ ︷√
k2
0 −

(
kx − 2πn

l

)2

− k2
z y




= − ky

kys
p0e

i(kxx+kysy) + Qs
0

∞∑
n=−∞

ei(kxnx−kyny)

2k2
yn

(14)

Here two aspects can be highlighted; on the one hand the fraction in the geometrical reflection will always
be real. On the other hand, the terms in the infinite series will be real, and therefore radiate, as long as

−

(√
k2
0 − k2

z − kx

)
l

2π
< n <

(√
k2
0 − k2

z + kx

)
l

2π
(15)

An equation similar to (9) but valid for the backside, 0<x<d, has to be solved

∂2p̃b

∂y2
+

(
k2
0 − α2 − k2

z

)
︸ ︷︷ ︸

−β2

p̃b = Qb
02π

∞∑
n=−∞

δ (2πn− l (kx − α)) δ (y) (16)

This equation is already solved (c.f. above) and has the solution

p̃b = Be−βy + Ceβy − D

β2
sinh (βy) (17)

But here the boundary condition both at y=0 and at y=−d are introduced
[
∂p̃b

∂y

]

y=0

= −βBe−βy + βCeβy = (β (C −B)) = 0 ⇒ B = C (18a)

[
∂p̃b

∂y

]

y=0

= B
(
eβy − e−βy

)− D

β
sinh (βy) = 0 ⇒





βd = 2πm, m = 0,±1,±2

B =
D

β2

(18b)

and thus

p̃b =
D

β2
(2cosh (βy)− sinh (βy)) (19)

which determines the natural frequencies for the geometrical reflection inside the cavity. However, the
only present components at the backside field are emanating from the holes, i. e. the periodic velocity
sources. What is interesting is the impedance, i.e. boundary condition, the velocity source will meet at
the surface of the backside of the perforated plate. This will determine the magnitude of the velocity
sources and thus the magnitude of the scattered field on the outside. The backing pressure can now be
transformed back as for the scattered field
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p̃b = Qb
o

∞∑
n=−∞

(2cosh (kyny)− sinh (kyny)) eikxnx

k2
yn

(20)

The volume velocity sources, Qn, at x=nL, are governed by the relationship between the outer and the
backing fields which can be represented as a two-port of a duct (the perforation) with the length lh. The
incorporated field quantities are pressure and volume velocity of the outer sound field on one side and
of the backing sound field (indicated by the subscript b) on the other side

[
Qs

Qb

]
=

iS

(ρc + RS)




coth (βL)
−1

sinh (βL)
−1

sinh (βL)
coth (βL)




[
p |y=0

pb |y=0

]
(21)

These equations can then be inserted into the equations for the pressure fields in order to obtain a single
expression for the system.

4 - CONCLUSION
By solving the transformed sound field at the back and front side simultaneous, a formulation for the
total system is obtained. Furthermore, the use of Poisson summation formula often makes it possible
to reduce the sums to closed formulations. The technique is here demonstrated on the case of periodic
slits, i. e. on a general two-dimensional problem.
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