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ABSTRACT
The acoustical impedance at ground interface is traditionally derived on the basis of local reaction of the
ground to an incident acoustic wave without consideration for interaction between the sound wave and
the induced surface waves in the ground. To account for this air-to-ground coupling a two-dimensional
model of an acoustic medium over a poro-elastic ground subjected to plane acoustic waves is considered
in this paper. From the analytical solution of the coupled wave equations in the two media expressions
are derived for the acoustic and seismo-acoustic impedances. The paper presents a parametric study of
the effect of frequency and incidence angle on these quantities. In addition, for an instrumented airblast
site where noise and vibration measurements were made, the impedance terms are derived from the
analytical model and their sensitivity to wave velocity in ground is investigated.

1 - INTRODUCTION
Prediction of long-range, outdoor sound propagation is often based on the assumption that the ground
acts as a locally reacting surface represented by its acoustic impedance (e.g. [1]). Commonly used
models for impedance calculations include those by Delaney and Bazley [2] and Attenborough [3]. The
Delaney-Bazley’s single parameter model represents the porous ground by its flow resistivity, whereas
that by Attenborough treats the porous ground as a rigid frame with randomly varying pore sizes and
is characterised by four parameters. Representation of the energy absorption of the ground by locally-
reacting models may fail to realistically account for air-to-ground coupling which develops under the
propagation of sound and its interaction with the surface waves in the ground. The present paper aims
at addressing this issue by investigating analytically the reflection of acoustic plane waves at the surface
of a poro-elastic halfspace. The solution of the coupled wave propagation equations in the two media is
used to derive both the acoustic impedance, relating the overpressure and particle velocity in air, and
the seismo-acoustic impedance, relating overpressure to particle velocity of ground surface. The paper
presents a parametric study of the effect of frequency and incidence angle on impedance. In addition, for
an instrumented airblast site, where outdoor noise and vibration measurements were made, the seismo-
acoustic impedance is derived analytically and its sensitivity to the surface wave velocity in ground is
investigated.

2 - ANALYTICAL MODEL
The model adopted here for the mathematical derivation of impedance is a fluid (acoustic medium) over
a poro-elastic half-space subjected to a plane acoustic wave impinging on the interface between the two
media. If the vectors u and U denote respectively the displacement of solid frame and pore fluid and
w= Ω× (u−U) is the relative pore fluid displacement, with Ω denoting porosity, then Biot’s equations
of dynamic poro-elasticity can be expressed as [4,5]

{
µ∇2u + (H − µ)∇e− c∇ζ = ρü− ρf ẅ

C∇e−M∇ζ = ρf ü−mẅ − η

k
F (ωẇ) (1)
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where ρf = mass density of pore fluid, ρ = Ωρf + (1− Ω) ρs is the average mass density of material,
m = αρf/Ω, in which α represents the tortuosity of pore structure with values ranging from 1 to 3 for
most materials [6], η = ρfν is the dynamic viscosity of pore fluid, ν = kinematic viscosity and k =
permeability. Furthermore, e = ∇ · u is the volumetric strain of solid frame, ζ = ∇ ·w is the increment
in fluid content, µ is the shear modulus of skeletal frame, and the deformation moduli C, M, and H are
defined by

M =
(

β − Ω
Ks

+
Ω
Kf

)−1

; C = βM ; H = βM2 + K +
4
3
µ (2)

with β = 1−K/Ks, where Ks = bulk modulus of solid grains, Kf = bulk modulus of pore fluid, and K =
bulk modulus of solid frame which can be calculated from the values of µ and Poisson’s ratio, n, according
to K = µ (2/3 + 2n/ (1− 2n)). Finally, F (ω) is a frequency-dependent correction to the viscosity, which

is a function of pore structure, permeability and viscosity according to F (ω) =
(

1 +
i

2
ω

ωc
N

)0.5

where

ωc =
ηΩ

ρfkα
and N ≈ 1 for most porous media [6,7].

Following [6] and [8], the interaction of a harmonic plane wave with frequency ω, which is incident from
the fluid onto the porous solid, can be solved using wave potentials. To this end, the displacement of the
fluid medium is represented by a scalar potential and the displacements of the solid and pore fluid are
represented by scalar and vector potentials

{
u = ∇φs +∇×Ψs

w = ∇φf +∇×Ψf
with Ψ = (0, ψ, 0) (3)

An incident acoustic wave is reflected as an acoustic wave in the fluid and refracted as one shear and
two pressure waves in the porous solid. For an incidence angle θ from the vertical, the wavenumber in
the fluid is kf = ω/c and the incident and reflected wave potentials are

{
φi = Aiexp [i (ωt− kzz − kxx)]
φr = Arexp [i (ωt + kzz − kxx)] (4)

where kx = kf sinθ and kz = kfcosθ. The potentials in the porous medium can be written as




φs = A1exp [i (ωt− k1zz − kxx)] + A2exp [i (ωt− k2zz − kxx)]
φf = B1exp [i (ωt− k1zz − kxx)] + B2exp [i (ωt− k2zz − kxx)]
ψs = A3exp [i (ωt− k3zz − kxx)]
ψf = B3exp [i (ωt− k3zz − kxx)]

(5)

where the subscripts 1, 2 and 3 stand for the P1, P2 and S waves in the porous medium. The vertical
wavenumbers k1z , k2z and k3z can be determined by substituting the above potentials in Eqns (1) and
(3) and setting the determinant of the resulting algebraic equations to zero

k2
1,2 = ω2

(Hm′ + ρM − 2ρfC)±
√

(m′H − ρM)2 + 4 (ρfm−m′C) (ρfH − ρC)

2 (HM − C2)
(6)

k2
3 = ω2 ρ

µ

(
1− ρ2

f

ρm′

)
(7)

where m′ = m− iηF (ω) / (ωk) and the definition k2
i = k2

x + k2
iz is introduced for convenience.

To determine the potential amplitudes for the reflected and refracted waves one has to impose the
pertinent boundary conditions at the fluid-porous solid interface. These include:

• continuity of normal fluid displacement

• continuity of normal traction

• continuity of fluid pressure

• vanishing of tangential stress
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For a given incidence angle θ and frequency ω, imposition of the these conditions leads to an algebraic
equation for the unknown potentials in terms of amplitude of the incident wave Ai. Subsequently, the
displacement u and velocity u̇ = iωu at any point in the poro-elastic medium can be determined with
the help of Eq. (3).
The pressure and vertical velocity in fluid at the fluid-solid interface can be calculated from





Pa = −kf∇2 (φi + φr) = ρfω2 (Ai + Ar)

Va =
∂

∂t

[
∂

∂z
(φi + φr)

]

z=0

= ωkz (Ai −Ar)
(8)

If Vg denotes the vertical component of particle velocity in solid frame, then the complex acoustic
impedance, Zaa, and the seismo-acoustic impedance, Zag, of the ground are defined as

{
Zaa = Pa/Va

Zag = Pa/Vg
(9)

The wave attenuation in both media can be accounted for by using hysteretic damping. To this end,
all modulus terms are represented as complex quantities in the form K = K0 (1 + 2iξ) where ξ is the
hysteretic damping ratio in the material.

3 - PARAMETRIC STUDY
A number of results are presented here to highlight the influence of some key parameters on the
impedance. An attempt is also made to investigate the consequences of treating the ground as a lo-
cally reacting surface. The material parameters in these analyses are given in Table 1.

ρf

(kg/m3)
ρ

(kg/m3)
Ω α n ξ ν

(m2s−1)
Kf

(Pa)
Ks

(Pa)
K

(m2)
1.2 1800 0.35 1.25 0.40 0.01 1.45

×10−5
1.3
×105

3.6
×1010

2.3
×10−10

Table 1: Material parameters in impedance calculations.

In addition, the sound speed is assumed equal to 330 m/s. The shear-wave velocity of ground, Vs =
(µ/ρ)0.5, however, is taken as a variable. It is shown in the following that the ratio between these two
velocities is a major factor affecting the impedance.
Figure 1 displays the variation with incident angle, θ, of the absolute values of Zaa and Zag for Vs =
300 m/s and for frequencies ranging from 10 to 100 Hz. The figure demonstrates that, whereas Zaa is
strongly dependent on frequency, Zag is fairly insensitive to frequency but on the other hand it is strongly
dependent on θ. However, in the range of practical interest between 45 to 90 degrees, one may discount
any θ-dependence.

Figure 1: Variation with incident angle of absolute values of Zaa and Zag for Vs = 300 m/s.

Sensitivity studies of seismo-acoustic impedance have largely focused on the effect of frequency and such
material parameters as permeability and porosity. Whereas these parameters have a key role on sound
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propagation and interaction of acoustic waves with the ground, it appears that the shear wave velocity
of the ground may have an equally important influence on impedance. The airblast experiments in the
forests of Norway during the summer and spring of 1994 and 1995 provided a valuable opportunity to
evaluate this assertion. The experiments were performed at two sites in the forests of Norway with the
intention of, among others, collecting overpressure and ground response data to calibrate the existing
low-frequency sound propagation models or advance a new model [9]. Over the measurement stretch,
which ranged from 200 m to about 15 km, the overpressure data were consistently smaller than their
predicted counterparts with the measured data dropping to 1/10-1/100 of the theoretical values at larger
distances. This difference is larger than can be explained by simple consideration of wave attenuation
in the ground. Other justifications for this deviation, such as the acoustic-to-seismic energy transfer
through the second pressure wave in the porous ground [10], can hardly be sufficient either. A new
explanation, based on the interaction of sound wave and surface Rayleigh wave in the ground, has been
pointed out recently as a more likely mechanism [11]. The fact that a sound wave propagating at about
the same speed as that of the Rayleigh wave in the ground induces large ground response is believed to
be a determining factor in wave propagation in a transeismic sound propagation regime. The analytical
model developed in Sec. 2 provides a simple tool to test the significance of this condition. Figure 2 shows
the variations of the real and imaginary parts of Zaa and Zag with Vs for the porous material in Table
1 and for a frequency f = 10 Hz. The impedances correspond to incident sound waves at grazing angle.
Figure 3 displays a 3-D plot of the variation with both frequency and shear-wave velocity of the absolute
value of Zag. The remarkable drop in the value of Zag at c/Vs ≈1 is the most important feature in these
plots. Indeed a gross estimation of the seismo-acoustic impedance calculated using the field data from
the Norwegian blast tests exhibited some relatively small values at large distances [11]. Measurement of
the surface wave dispersion curve at one of the test sites has indicated that for a typical frequency of
overpressure signal of 8 Hz at large distances one should expect a surface wave velocity of about 300 to
350 m/s.

Figure 2: Variations of real and imaginary parts of Zaa and Zag with Vs for f = 10 Hz.

These observations suggest that the use of a locally reacting model may fail to capture an important
element in the coupling of airborne acoustic energy to seismic energy for transeismic conditions. More-
over, determination of impedances using methods that rely on a locally-reacting concept may provide
inadequate results.

4 - SUMMARY AND CONCLUSION
The paper presented a theoretical model for the reflection/refraction of acoustic plane waves at the
interface with a poro-elastic halfspace. The model was used to determine the complex acoustic and
seismo-acoustic impedances at the interface and examine their sensitivities to angle of wave incidence
and shear-wave velocity of ground. The results showed a remarkable dependence of the seismo-acoustic
impedance on c/Vs, with the impedance attaining a minimum value at c/Vs ≈1. This suggests that
the use of a locally reacting model that ignores the interaction of sound wave with surface wave in
ground may fail to capture the acoustic-to-seismic energy coupling and result in wrong predictions of
overpressure and ground vibration.
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Figure 3: Variation with frequency and shear-wave velocity of absolute value of Zag.
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