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ABSTRACT
Among all acoustical sources of tire-road noise, the radiated sound from radial tire vibrations is of major
importance in low and medium frequency ranges. Different mathematical models for tire vibrations
modelling have been developed over thirty years: ring on an elastic foundation (2D) [1,2,3], orthotropic
plate under tension on an elastic foundation (3D) [4,5], thin shell (3D) coupled with finite element method
– FEM – or purely FEM model (3D) [7]. Whereas FEM is a powerful means to model the complexity
of tire dynamic behaviour or road-contact interactions, analytical approaches like ring and plate models
are still of interest to understand physical phenomena and structure-borne sound [6]. The paper focuses
on comparing ring and plate models for evaluating the radial dynamic response of a tire excited by a
point force. The tire is considered at rest and unloaded. Theoretical and experimental comparisons are
presented for each model. General physical insights are finally discussed for each approach.

1 - INTRODUCTION
Car tires play an important role on the riding comfort. They become the main acoustical source for
vehicle speeds above 80 km/h. The vibrations induced on the tire when rolling on a rough road surface
are responsible for the tire-road noise in low and medium frequency range. In order to predict tire-road
noise emission, it is necessary to know the tire dynamic response. Two different analytical models are
studied: the ring model (2D) and the thin plate model (3D). For each one, the tire is supposed at rest
(no rotating speed) and unloaded. Only flexural vibrations are considered in this study. The model of
damping is hysteretic. The comparison of the models is performed by calculating the FRF mobility of
the tire for an harmonic radial point force at the center of the belt. This FRF is obtained by using modal
expansion method. The natural frequencies and mode shapes are derived from the ring and plate theory
[6]. Measurements have been performed on a smooth (without tread patterns) tire 155/70R13 inflated
at 2 bars. Comparison are made between predictions and experimental results.

2 - THE 3D PLATE MODEL
The thin plate model of the tire is shown in Figure 1. Only the normal motion of the plate − the radial
motion of the tire − is considered. The equation of motion is, according the Kirchhoff hypothesis of thin
plate
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w (x, y, t) = p (xo, yo, t)

where Tox and Toy are membrane tensions produced by the inflated air, Bx and By are the longitudinal
and transversal bending stiffnesses respectively, Bxy the cross stiffness of the belt and s the bedding
number of the Winkler foundation. All these quantities are complex when operating in the frequency
domain in order to take into account the damping in the process.
The normal displacement w(x,y) represented in terms of Fourier series in which each term is a mode
characterizing the structure
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where qr is the modal participation factor and yr the normal mode r of the structure which verifies the
boundary conditions - it is the product of two eigenfunctions given by
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where m and n represent the mode numbers in longitudinal x and transversal y direction of the plate.
The general expression of the plate FRF mobility obeys

Y jk (ω) = iω

N∑
r=1

φjrφkr

ω2r (1 + iηr)− ω2

where ωr is the undamped natural frequency and ηr the structural damping − loss factor − of mode r.
φjrφkr represents the modal constant of each mode.

Figure 1: Tire model − orthotropic thin plate under tension on an elastic foundation.

3 - THE 2D RING MODEL
Although relatively simple, the ring model, used for analyzing the structural behaviour of tires, is also
of interest for understanding the tire dynamics. The tire belt is modeled as a ring and the sidewalls
are modeled as an elastic foundation with radial and tangential stiffnesses kr and kθ respectively. The
equations of motion are written as
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where, with reference to Figure 2, u3 and uθ represent the radial - transverse - and tangential - cir-
cumferential - displacement, f 3 and fθ are the external forces per unit area in the radial and tangential
direction respectively, D = Eh3/12

(
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)
is the bending stiffness, K = Eh/

(
1− ν2

)
is the membrane

stiffness and a is the mean radius of tire. The dots and primes denote differentiation with respect to t
and θ respectively. Although both extensional and inextensional vibrations exist, it was shown that at
low frequency, the inextensional - flexural - modes are dominant in the tire response, and so that the
resolution of the system is simplified. The forced radial response can be written, according to the modal
expansion method

u3 (θ) =
N∑

n=1

αncos (nθ) + βnsin (nθ)

where an and bn are general coordinates to be determined and n is the circumferential wave number.
Substituting this equation into the equations of motion and by making use of the orthogonality of the
trigonometric functions, yields to each set of generalized coordinates x=an,bn a linear second order
differential equations
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ẍ + Gẋ + Kx = Q

where G and K are 2×2 matrices with coefficients being function of the model parameters; Q is the
generalized force vector.
This system can be solved for time or frequency domain. The response of the ring to an harmonic point
force in radial direction is hence derived from these equations giving

f3 (θ, t) =
1
a
δ (θ − θ∗) eiωt

in which the Dirac δ function is used to represent the point load. θ∗ denotes the location of the point
load with respect of the ring coordinate ( θ∗ = 3π/2 in this study). Here, viscous damping − G matrix
- is introduced due to the time description but hysteritic damping can be used in the frequency domain
to be homogeneous with the plate model.

Figure 2: Tire model − ring on an elastic foundation.

4 - NUMERICAL RESULTS AND EXPERIMENTAL COMPARISON
The prediction given by the analytical models are compared to the vibration measurements performed on
an inflated car tire. The experimental procedure and the test rig are described in [5]. An experimental
modal analysis of the tire is performed at low frequency to identify natural frequencies, damping factors
and mode shapes. There is a very good correlation between experimental and theoretical mode shapes
for each model. Figure 3 shows the mode shapes calculated from the theory for the first six modes. Table
1 lists the modal parameters for the low frequency flexural modes of the tire. The overall agreement is
very satisfactory.

mode n 1 2 3 4 5 6 7
(a) ωn (Hz)/ ηn

(%)
136.5/7.1 163.2/6.3 192.4/7,0 228.0/7.0 264.4/8.0 304.8/7.7 348.5/8.0

(b) ωn (Hz)/ ηn

(%)
143,1/7.0 161,2/7.0 189.0/7,5 222.6/8.3 260.5/9.5 301.9/10.9 346.7/12.5

(c) ωn (Hz)/ ηn

(%)
140,0/6.7 163,6/7.4 193.1/8,0 227.0/8.7 264.7/9.4 306.0/10.2 350.5/10.9

Table 1: Natural frequencies and hysteretic damping for the seven first flexural modes; (a):
measurement, (b): ring model, (c) plate model.

The magnitude of the radial point FRF mobilities at the center of the belt are plotted in Figure 3.
About 50 modes in the circumferential direction have been taken into account for the computation.
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Structural parameters of each tire models have been updated to correctly fit to the measured curve. At
low frequency − [0-400] Hz − there is an acceptable agreement between theory and measurement for
both models. Above 400 Hz, the ring model fails as expected [3]; the mobility of the tire becomes flat
and smooth.

Figure 3: First sixth flexural mode shapes of the tire.

At high frequency, the mobility tends to the behaviour of an infinite plate, which is real and independent
of frequency [5,6]. The reason of this difference is the fact that the ring model is a one-dimensional
waveguide whereas for frequencies higher than about 400 Hz, wave propagation in axial direction is
possible. This means that the tire is a two dimensional waveguide in this frequency range.

Figure 4: Comparison between calculated and measured point FRF mobility (θ = 3π/2, xo = lx/4).

5 - CONCLUSIONS
The analytical models introduced in this paper provide an effective description in predicting the dynamics
of tires in the low and medium frequency range. It has been shown that the 2D ring model is valid at low
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frequencies up to about 400 Hz while the 3D plate model is valid over the whole frequency range [0-2000]
Hz. At low frequencies, the 2D circular ring model gives a correct description of the one dimensional
wave propagation in the tire. At higher frequencies (when the wavelength is close to the tread width of
the tire), the tire becomes a two dimensional waveguide and the plate model has to be used.
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