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ABSTRACT
The vehicle traffic creates high levels of noise. The most immediate protection is the placement of an
acoustic barrier. One of the problems in the design of the barrier is the calculation of the modified
acoustic field in the illuminated and shadow zones, due to radiation an scattering from barrier. The
boundary integral equation method has been used extensively as a numerical technique to solve full
space problem. A half-space formulation to account for the existence of an earthly plan, with an acoustic
barrier has been given. A so called half-space Green’s function within a modified version of the Helmholtz
integral equation. The Helmholtz integral equation coefficient can be evaluated by a closed boundary.
Experimental checking of the numerical results from barriers of several different shapes supported on a
infinite surface plane are accomplished to verify this formulation.

1 - INTRODUCTION
The different works on the modelization of the acoustic behaviour of the barriers could be classified by
the employed method. In this way, Redfearn, Fher, Kurze, Maekawa, Kawai, generalize the different
geometries of the barriers and express the attenuation as a function of dimensionless variable determined
by their geometry. The investigations carried out by, Kawai, Fujiwara, Yuzawa, studying the attenuation
starting from the absorbent materials of the barrier. Pierce and Fujiwara approaching the study of
the diffraction for different obstacles, as thick barriers. Acousticiens like, Scholes, Isei, Jonasson and
Thomanson, study the presence of surfaces out from the barrier and the interference due to the waves
reflected by these. Finally, in this work, the use of the boundary elements technique was used. A
Helmholtz integral equation for a half-space formulation was used to remove the contribution due to the
infinity plane. The calculation results are compared with model experiments for several kinds of barriers.
The experimental and calculated results are in good agreement.

2 - THE MATHEMATICAL DESCRIPTION OF THE PROBLEM
The velocity potential field φ will described in terms of the Helmholtz equation ∇2φ + k2φ = 0 in a
acoustic domain B, in three dimensions, with appropriate boundary conditions, and the Sommerfeld
radiation conditions in the far-field. The Helmholtz integral equation of the first kind derived from
Helmholtz-Kirchhoff’s formula in B, with boundary surface S, see Fig. 1, a following expression is
obtained neglecting the time factor ejωt, (time dependence convection has is been used, due to a time-
harmonic point source),

C (P )φ (P ) = 4πφi (P ) +
∫ ∫

S

(
Gk (P, Q)

∂φ (Q)
∂n+

Q

− ∂Gk (P, Q)
∂n+

Q

φ (Q)

)
dS (Q) (1)

Here the integration runs over the boundary S, of the acoustic field domain considered, the ground and
the surface barrier. The contribution from the far-field boundary of the acoustic domain, the closure
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provided by the sphere at infinity, has been removed analytically by invoking the Sommerfeld radiation
condition. Where, φ (Q) is the velocity potential field satisfying Helmholtz equation and boundary
conditions. φi (P ) = [exp (−jkd)] d direct incident wave potential field in the absence of the barrier;
Gk (P,Q) is the Green’s function for the k = ω/c wavenumber; r is the distance between any two points
P and Q. The free space Green’s function is the symmetric factor Gk = exp (−jkr) /r is at an edge or
corner, C (P) can be evaluated by

C (P ) = 4π −
∫ ∫

S

∂

∂n

(
1
r

)
dS (2)

where, C (P ) = 4π for P ∈ B, C (P ) = 2π for P ∈ S and an only tangent plane exists; C (P ) = 0 for
P ∈ B′.
You will proceed to decompose the space B∪B′ in three enclosures, the acoustic enclosure B, the enclosure
formed by the half space BH , and the enclosure to the acoustic barrier Bb , so that B′ = BH ∪Bb . The
acoustic enclosure will be bounded now by the surface SH , not common with the barrier and the surface
barrier Sb, the barrier will be bounded by the surface Sb ∪ Sc, where the superficial boundary Sc is the
common boundary among the barrier and the infinite surface SH , that it defines the half space. The
normal n+ is taken pointing outwards from the domain of the interest B, (see Fig. 1).

Figure 1(a): Barrier and
surrounding ground.

Figure 1(b): Nomenclature for the
half space problem (P ’ being

symmetric to P with respect to the
ground surface).

Carried out the decomposition where the acoustic barrier is in contact with the infinite plane surface, the
previously mentioned formulation should be modified in the problem of the half space. For the half space
bounded by the infinite plane BH , (see Fig. 1), the half-space Green’s function, denoted by GH

k (P,Q),
is a properly defined function everywhere in the upper half-space except at the location of the source
where it has a singularity of a known form; it satisfies the following set of equations,

(∇2 + k2
)
GH

k (P, Q) = δ (P −Q) (3)

the boundary condition on the ground, the Sommerfeld condition at infinity. It will be similar to the
overlapping of the direct wave and the diffuse wave from the plane SH and have the form:

GH
k (P, Q) = exp (−jkr) /r + RHexp (−jkr′) /r′ (P,Q) ∈ R3 (4)

where, RH is the reflection coefficient ( −1 ≤ RH ≤ 1); r ’ is the distance between two points P ’ and Q ;
RH=1 for rigid plane ( ∂φt/∂n = 0), and RH=−1 for soft plane ( φt = 0). If the ground is not perfectly
reflecting, the ”image-source” should be multiplied by a weighting function depending of the model of
ground considered. For locally reacting grounds or porous stratified media it is possible to have a Green’s
function expressed either in a closed form or in series or asymptotic expansion, (∂/∂n + jωρ0/Zn)φt, for
a dispersive surface. When P is in SH , as r=r ’, the Green’s function for the half-space decreases to:

GH
k = (1 + RH) e−jkr/r (5)

The above equation is not valid for soft plane, since RH=−1 and the Green’s function GH
k reduces to

zero. Nevertheless, for a practical problem these extreme cases are not given. The boundary integral of
the half-space problem becomes:

C (P ) φ (P ) = 4πφt (P ) +
∫ ∫

S

(
GH

k (P, Q)
∂φ (Q)
∂nQ

− ∂GH
k (P, Q)
∂nQ

φ (Q)
)

dS (Q) (6)
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where, φt = φi + φd is the incident velocity potential for the half space; φd (P ) diffuse wave potential
for the reflecting wave. At infinity a Sommerfeld radiation condition is enforced on the diffracted part
of the field φd, ensuring that there are only outgoing waves at infinity.

limr→∞rw (∂φd/∂r − jkφd) = 0 (w = 1, to 3D) (7)

The boundary of the acoustic barrier should be divided in two parts. The first Sb exposed to the acoustic
means, the second Sc are that it is in contact with SH . Then, the boundary integral equation for the
radiation and acoustic dispersion will become in:

C (P )φ (P ) = 4πφt (P ) +
∫ ∫

Sb

(
GH

k (P, Q)
∂φ (Q)
∂nQ

− ∂GH
k (P, Q)
∂nQ

φ (Q)
)

dS (Q) (8)

C (P ) = 4π for P interior to B, C (P ) = 0 for P exterior to B. For P ∈ Sb and P /∈ SH ,

C (P ) = 4π −
∫ ∫

Sb+Sc

∂

∂n

(
1
r

)
dS P ∈ Sb and P /∈ SH (9)

For P ∈ Sb ∩ SH , applying the second Green’s identity to φ and GH
k on the acoustic domain B that

excludes the singular point P and to the source point, (see Figs. 2 and 3), it is,

C (P ) = (1 + RH)
[
2π −

∫ ∫

Sb+Sc

∂

∂n+

(
1
r

)
dS

]
(10)

Figure 2: The point P on Sb ∩ SH .

Figure 3: The point P on Sb ∩ SH .

The surface Sc it does not contribute to equation (8), and it should be discretized to calculate C (P) in
the equations (9) and (10). The dummy elements of Sc are used only to integrate these last equations,
but there is not acoustic variable associated with these elements. Furthermore, the size of the mesh of
the dummy elements is not problem while it is enough good one to integrate the one derived normal in
the equations (9) and (10).

3 - CONCLUSIONS
The method is almost completely numerical and does not include atmospheric absorption due to wind
and temperature gradients. The directivity of the source is not considered. A comparison between
numeric results for different types of barriers with analytic solution and experimental results are in good
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agreement. In these results, when the source is relatively far away from the screen, the shape of the
screen does not have a very significant influence on the excess attenuation. By a modified version of the
Helmholtz integral equation can be solved the acoustic problems associated with acoustic barriers on an
infinite plane surface. The numeric test has been taken out for the radiation and dispersion of barriers
with different shape.
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