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ABSTRACT
The vagueness and uncertainty involved in community noise annoyance modeling and prediction, inspires
the use of fuzzy techniques. In this paper we will focus on predicting noise annoyance using a set of
linguistic rules. The fuzzy membership functions for linguistic terms such as ’high’ that are used in
the rules are not extracted from the database but are obtained from external sources. Among these
sources are the International Annoyance Modifier Study, dosage response relations found in literature,
and various expert opinion. The annoyance prediction itself is based on a set of IF-THEN rules involving
the linguistic terms, fuzzy AND, and fuzzy OR. The importance of each rule in the model is tuned
by comparing the outcome to the results of a social survey. The quality of a proposed decision tree
is measured by the uncertainty in the prediction. This results not only in a modeling tool, but also
in knowledge on the construct of community noise annoyance. The technique is applied to a detailed
Austrian survey involving people exposed to road and rail noise living in one valley [1]. Several variables
are included. The sound exposure related rules dominate the prediction, but also variables describing
the background soundscape and the so-called enviroscape and psychscape have some impact on the
performance of the model.

1 - INTRODUCTION
This paper further investigates the use of possibility theory and fuzzy logic to address the vagueness and
uncertainty that is intrinsic in the relationship between sound exposure and the level of annoyance. An
example of this vagueness is the meaning of linguistic terms such as ”moderately”, ”highly”, ... that
are used to indicate the level of annoyance. Also many other factors that can influence annoyance are
vague or uncertain by nature. By using those techniques the handling of this vagueness can be built
directly into the model itself. Another advantage of fuzzy models is the way in which they make the
representation of their knowledge very explicit through a set of linguistic rules.
In the first part of this paper, the fuzzy logic tools that will be used are further explored. Secondly
we focus on the data from the Austrian survey that is used to test the model. In the third and fourth
sections, the details of the representation of the linguistic terms and the implemented rules are fully
amplified. Finally, some conclusions are drawn.

2 - FUZZY MODELING
A fuzzy model is compromised of two parts: facts and rules. Facts are of the form X = A, where X is a
variable and A is a value which can be crisp or fuzzy. In possibility theory, all values are represented by
possibility distributions over the domain U of the variable X. This distribution indicates the degree of
possibility that a value u of the domain U belongs to A. Often, there is also a linguistic term associated
with such a possibility distribution. For instance, the term ”young” can be represented by a possibility
distribution on the universe of age. This indicates the extent to which each age is similar to the term
young. Variables for which every value is associated with a linguistic term are called linguistic variables.



Copyright SFA - InterNoise 2000 2

The core of a model is formed by linguistic rules that express the available knowledge. A rule relates
some premise to a conclusion and has the form: IF X = A THEN Y = B where X and Y are variables
over the universes U and V respectively, and A and B are (linguistic terms associated with) possibility
distributions over U and V. E.g.: IF (distance to road) = small THEN (road noise annoyance) = high.
Rules can be seen as a possibility distribution, R(u,v), over a cartesian product of the universes. The
resulting distribution can be calculated by using an implication operator. In literature different classes of
fuzzy implication operators are described. Some are direct extensions of crisp implication, but the class
that is most widely used in engineering applications is based on the classical conjunction operator. This
model is known as the Mamdani model and is used throughout our paper [2], [3]. In fuzzy set theory,
there are some choices to model such a conjunction operator. In fact, any triangular norm T can be used
for that purpose. We will use the minimum norm T(x,y) = min(x,y) and the product norm T(x,y) = xy.
The purpose of rules is to infer new facts. The rule IF X = A THEN Y = B allows the inference of some
information about Y, given a fact about X, such as X = A’. The inferred possibility distribution of Y is
calculated with the compositional rule of inference:

B′ (v) = supu∈Umin (A′ (u) , R (u, v)) , ∀v ∈ V

where R is the representation of the rule. Please note that in this extension of the modus ponens from
classical logic, the fact and the premise of the rule do not have to match exactly.
The real power of fuzzy reasoning lies in systems of parallel rules. In such a system, the (complex)
relationship between two variables X and Y is expressed by more than one rule, for instance:

• IF X = A1 THEN Y = B1

• IF X = A2 THEN Y = B2

• ...

• IF X = An THEN Y = Bn

There are two different ways to infer the resulting possibility distribution on Y. First, one can use the
given fact X = A’ in each separate rule to infer a piece of the result with the previously described
method, and then gather all those pieces with a disjunction operator. Alternatively, it is also possible
to calculate the representation of each rule, R1, R2,..., Rn, combine them into one representation R of
the whole system using a disjunction, and then use the compositional rule of inference once to infer the
final conclusion. It can be proven that both possibilities always produce the same result. In a Mamdani
system, the implicit ”else” between the rules is thus interpreted as an OR. To model a disjunction, any
triangular conorm S can be used. Here, we will use the most common one, namely the maximum conorm
S(x,y) = max(x,y).
So far, only the simplest type of rule was described. It is also possible to express the confidence of a
rule, or stated otherwise, the sufficiency s of having the premise true for concluding the consequent true
[4]. Such a ”confidence” rule, ”IF X = A THEN Y = B with sufficiency = s” is equivalent to ”IF X =
A THEN Y = B ∗” with B∗ defined as B∗(v) = max(B(v),1-s), ∀v ∈ V

3 - TEST DATABASE
The constructed noise annoyance model will be tested against the results of an Austrian survey. This
detailed database contains information about 2007 people that are exposed to road and railway noise,
all living in one valley in Tyrol [1]. The telephone survey includes not only annoyance data, but also a
lot of other psychosocial and environmental factors. Simulations of noise level for each source (Ldn, Leq,
...) and data on air pollution and exposure to dust were added.
Noise annoyance was expressed on a four point scale labelled: ”überhaupt nicht” (not at all), ”teilweise”
(a little), ”mittelmaßig” (moderately) and ”erheblich oder stark” (highly).
It should be mentioned that in this database the level of traffic noise annoyance is rather unequally
distributed, in fact, very few people seem to be really annoyed: 60% of the people in the database is not
at all annoyed, 20% is slightly annoyed, 10% is moderately annoyed and only 10% is highly annoyed.

4 - REPRESENTATION OF THE MODIFIERS
A very important part in the construction of a linguistic fuzzy model, is the choice of the representation of
the linguistic terms that are involved. In our case, these are ”überhaupt nicht”, ”teilweise”, ”mittelmaßig”
and ”erheblich oder stark”. Assuming the modifiers were interpreted in a pure linguistic way by the
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respondents, we used the data available from the International Annoyance Modifier Study [5] to model
those terms as natural as possible. In that study, people were asked to indicate on a continuous numeric
scale from 0 to 10 what annoyance level best corresponds to each of 21 modifiers. For the German
language, the survey contains 61 records.
For each modifier, we calculated the standard deviation. Then we constructed a Gaussian distribution
with this standard deviation around each individual response. Finally, the resulting functions were
summed and the result was normalized [6].
First of all, the fact that ”erheblich” and ”stark” were considered as synonyms in the survey was con-
firmed: their curves were almost identical. Secondly it can be noticed that ”mittelmaßig” is very sharply
centered around 5 and ”teilweise” is interpreted very broadly. Mainly because of this great overlap,
slight changes were made to the curves to make them more appropriate for practical purposes. Also, the
very small curve for ”überhaupt nicht” was substituted by the fuzzy complement of ”teilweise” and the
”erheblich” curve was changed to a monotonic increasing sigmoid fit, based on the cumulative distribu-
tion of the scaling study. This better reflects the fact that this is the last category: the highest possible
annoyance should definitely fall within this modifier. Figure 1 shows the final representations.
Furthermore, it is believed that the respondents may have decided their choice of modifier not only based
on the linguistic meaning of the term, but rather on a division of the scale into four equal parts. This
observation gives some rationale to our adaption of the modifiers to a more evenly distributed set.

Figure 1: Final German modifiers.

5 - GENERAL STRUCTURE OF THE MODEL
In this paragraph the basic parts of the model are explained.
Starting distribution. To start with, a possibility distribution that more or less reflects the degree
to which the average person in this region is annoyed, is constructed. This is based on the probability
distribution of the database, and is thus slightly in favor of no annoyance at all. This initial distribution
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assures that the lack of any additional information on the individual respondent, resulting in a possibility
distribution of all 1’s (every level of annoyance is equally possible), leads to a conclusion based on the
available probabilistic information for the whole population.
Sound exposure. There has been extensive research on the extraction of dosage-annoyance relations
from social surveys [7]. To include this knowledge in the rule-based system the following sound exposure
rules are used:

• IF (% highly annoyed) = high THEN annoyance = high

• IF (% moderately annoyed) = high THEN annoyance = moderate

where % highly annoyed and % moderately annoyed are percentages obtained from a dosage-annoyance
relation.
For the definition of ”high” in the premise parts of the rules, a straight line was taken that reaches
a maximum value of 1 at 7% and 20% for high and moderate annoyance respectively. The possibility
distributions for ”high annoyance” and ”moderate annoyance” were obtained using the same procedures
as for the German modifiers, this time, using the English modifier data.
Other variables. Based on expert opinion and sources from literature [8], [9], several other systems of
parallel rules for those variables that possibly influence annoyance were constructed. See below. This
involves the non-trivial process of defining possibility distributions for the premises part of each rule.
Applying these systems of rules to a record in the database, results in a possibility distribution on the
annoyance domain.
Final annoyance distribution. This process gives us some possibility distributions, all ranging over
the same annoyance domain. The final resulting distribution is then obtained by combining these with
an AND operator. For this conjunction operation, the product norm as described earlier was used.
Final linguistic term. The purpose of the model is to predict the annoyance modifier that is used
by the respondent of the survey. To obtain this modifier, a similarity-function was calculated for the
final possibility distribution against each of the four German modifiers. The one resulting in the highest
similarity was chosen as the resulting linguistic term. Similarity is calculated as the overlap integral
between distributions.
This model resulted in one selected modifier for each person in the database. The whole process was
then put into an optimization cycle to maximize the correct hits by changing the degree of confidence
of each rule. The resulting degrees of confidence indicates how important the rule is in the construct of
annoyance.

6 - IMPLEMENTED RULES AND THEIR IMPACT
At the moment this paper was written, only a limited number of rules was implemented in the system.
They were used to predict both road and railway noise annoyance. The confidence levels shown below
were obtained when all rules were included in the optimisation.

Rules Confidence
IF (% highly annoyed) = high THEN annoyance = high 0.70 (road), 0.76 (rail)
IF (% moderately annoyed) = high THEN annoyance = moderate 0.53 (road), 0.66 (rail)

Table 1: Sound exposure.

System of rules Confidence
IF age = young THEN annoyance = NOT(high) 0.08 (road), 0 (rail)
IF age = old THEN annoyance = NOT(high) 0 (road), 0 (rail)
IF age = middle THEN annoyance = NOT(low) 0.25 (road), 0.17 (rail)

Table 2: Age.

System of rules Confidence
IF sensitivity = stark THEN annoyance = NOT(überhaupt nicht) 0.60 (road), 0.59 (rail)
IF sensitivity = (überhaupt nicht) THEN annoyance = NOT(stark) 0.10 (road), 0.27 (rail)

Table 3: Sensitivity.

See Figure 2 for the representation of this system for road.
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System of rules Confidence
IF (distance to source) = close THEN annoyance = NOT(not at all) 0.19 (road), 0 (rail)
IF (distance to source) = far THEN annoyance = (lower half of
scale)

0.21 (road), 0.07 (rail)

Table 4: Distance to nearest road, railway.

Number of children.

System of rules Confidence
IF children = (very few or none) THEN annoyance = NOT(high) 0 (road), 0 (rail)
IF children = few THEN annoyance = (more than half of scale) 0.11 (road), 0 (rail)
IF children = many THEN annoyance = NOT(moderate OR high) 0.08 (road), 0.09 (rail)

Table 5.

Confidence in noise exposure and noise sensitivity rules is large. This is the case for both noise sources.
For road traffic, the confidence in a rule based on distance is somewhat larger. We believe that this is
caused by the fact that the noise simulation does not include traffic on smaller, local roads and this may
influence the perception of annoyance caused by road traffic. The system replaces ’noise level’ to some
degree by ’distance to road’ to compensate for this.
Reported sensitivity to noise is the premise in one of the most important rules. However it is not very
useful in a model since it is generally not known. Moreover it is not clear to what extend the annoyance
question influences the response to the sensitivity question. Therefore a model was constructed for noise
sensitivity itself. It includes the same rules as above except for the noise level and distance rule. The
prediction of sensitivity is worse than the prediction of annoyance. The confidence level is now quite
large for the rules based on ”a few children” (0.41) and ”middle age” (0.43). Since this age-related rule
and in particular the rule based on the number of children, are suppressed in the model for annoyance,
this may indicate that these factors influence annoyance through the noise sensitivity variable.

7 - CONCLUSIONS
A fuzzy noise annoyance model based on linguistic rules is presented. At the time this paper is written
a few rules were implemented and the system was tested on an annoyance database obtained in Austria.
The results seem to correspond quite well to conclusions drawn from traditional models.
The approach opens however many new possibilities that could not fully be exploited yet.
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