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ABSTRACT
This paper deals with the inverse source problem in acoustics. It is assumed that a number of acoustic
sources are located at known spatial positions and the acoustic output is measured at a number of
spatial positions in radiated sound field. An important inverse problem in the field of acoustics is that
of reconstructing the strengths of a number of sources given a model of transmission paths from the
sources to a number of receivers at which measurements are made. The accuracy of reconstruction of the
source strength is dependent on the condition number of the matrix of transfer functions to be inverted.
Therefore, some regularisation algorithms are often used to produce reasonable solutions to discrete ill-
posed problems. But without prior knowledge of either the acoustic source field or the contaminating
measurement noise, it is difficult to determine the optimal regularisation parameter. To improve the
accuracy of reconstruction of acoustic sources by inverse techniques, this paper presents and compares
the performance of a number of methods for choosing the optimal regularisation parameters by using a
simple computer simulation model. In particular, we compare the use of generalised cross-validation and
the L-curve method for a number of source-sensor geometrical arrangements.

1 - INTRODUCTION
An important inverse problem in the field of acoustics is that of reconstructing the strengths of a num-
ber of sources given a model of transmission paths from the sources to a number of sensors at which
measurements are made. Here, the accuracy of reconstruction of the source strength is dependent on
the conditioning of the matrix of transfer function to be inverted. However, in spite of an optimal ge-
ometrical arrangement of the sensors and sources, the transfer function matrix to be inverted may be
ill-conditioned. This ill-conditioning will often result in an ill-posed problem. In such cases, by using
only the simple least squares method, we cannot ensure a fine resolution of reconstruction of the acous-
tic source strength distribution. Therefore, some regularisation algorithms are often used to produce
reasonable solutions to discrete ill-posed problems. But without prior knowledge of either the acoustic
sources or the contaminating measurement noise, it is difficult to determine the proper regularisation
parameter. Therefore, in order to improve the accuracy of reconstruction of acoustic sources, this paper
will illustrate the performance of some regularisation methods for choosing the proper regularisation
parameters through some results of a computer simulation of a particular geometry.

2 - CONDITIONING OF THE ACOUSTIC TRANSFER FUNCTION MATRIX
Sufficient guidelines to enable good resolution in reconstructing acoustic source strengths cannot be
provided by using the condition number only [1]. Often, there is no approximate solution in the inverse
process as a result to contamination noise, even though the transfer matrix is well-conditioned (i.e., the
matrix has a small condition number). Hence, we need another constraint to be able to eliminate the
effects of perturbations of the complex pressures such as, contamination of various kinds of errors (i.e.,
measurement errors and approximation errors), on the resolution of the reconstruction. By using the
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least squares method based on the singular value decomposition, the reconstructed source strength vector
q is given by

q = G−1p = VΣ−1UHp =
N∑

i=1

uH
i p
σi

vi (1)

where p represents the vector of complex acoustic pressure of the far field and the acoustic transfer
function matrix G(= UΣVH) is assumed here to be a square matrix and the matrices U and V contain
the left and right singular vector of G. The superscript H denotes Hermitian transpose. In this equation,
if the magnitude of the modulus of uH

i p is much greater than the associated singular value, q will be
dominated by the terms in the sum corresponding to the smallest singular value. Moreover, the magnitude
of the oscillatory q will be amplified by the right singular vector vi (i.e., this reconstruction will suffer
from the large perturbations caused by small perturbations of p). Therefore, it is very important that,
in order to reconstruct of the source strength distribution with accuracy, the effects of the contaminating
noise on the role of the modulus of uH

i p in equation (1) must be understood and analysed. Fortunately,
related to these effects, the discrete Picard condition [2] states that the magnitude variation of the
modulus of uH

i p, where p is the true complex pressure without contamination, must decay to zero faster
than σi. More details of various applications of this condition can be found in reference [3]. In order to
understand the relationship between the Picard condition and the conditioning of the acoustic transfer
matrix, we have carried out some numerical simulations with the particular two-dimensional geometry
shown in Fig. 1, where only one point cylindrically radiating monopole source located at the centre of
the11 source line array is assumed to have unit strength. It is assumed that 10% and 20% measurement
noise is added respectively to the exact complex pressure data at 11 measurement positions Here, it is
assumed that the difference between the exact pressure p and the measured pressure p̂ including all
types of errors is expressed as the vector of complex errors e given by e = p̂− p.

Figure 1: A particular geometrical arrangement of sensors and sources.

Errors are assumed to be spatially uncorrelated and were produced by 500 random trials with 10%
and 20% of the magnitude of the true complex pressure. Fig. 3 shows magnitude variations of the
modulus of uH

i p̂ and the results of the reconstruction by the simple least squares method with respect to
different levels of the contamination noise, when R=2L and the non-dimensional frequency krss = π/2.
Interestingly, in contrast to the magnitude variation of the modulus of uH

i p in Fig. 2, as the level of
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contamination noise increases, the value of the modulus of uH
i p̂ increases rapidly increases in the region

of the small singular values (i.e., the modulus of uH
i p̂ does not satisfy the discrete Picard condition) and

the resolution of the reconstruction becomes worse. This result is caused by the fact that the resolution
of the reconstruction will be completely dependent on the value of the modulus of uH

i p/σi and the linear
dependence between the estimated source strength q and the right singular vector vi is destroyed by the
very small singular values. Consequently, the dominant effect of noise on the variation of the modulus
of uH

i p̂ results in very poor reconstruction of the acoustic source distribution.

Figure 2: The magnitude variation of σi (circle), uH
i p (solid line) and uH

i p/σi (dotted line) of the true
complex pressure and the reconstruction result produced by the simple least squares method.

3 - REGULARISATION METHODS FOR ACOUSTIC SOURCE RECONSTRUCTION
As shown above, it is necessary to incorporate further information about the reconstruction in order to
improve the accuracy of reconstruction. If the transfer matrix is assumed to be a square matrix, the
Tikhonov regularised reconstruction of the source strength vector q0 can be expressed by

q0 = VΣ−1
R UH p̂ =

N∑

i=1

(
σ2

i

σ2
i + β2

)
uH

i p̂
σi

vi (2)

where β denotes the chosen regularisation parameter. If β is determined properly, we can prevent the
inversion of very small singular values. Therefore, the efficiency of the Tikhonov regularization method [4]
depends on the proper choice of the regularization parameter β that produces a fair balance between the
perturbation error and the regularisation error. However, for successful reconstruction, this regularisation
method must have knowledge or a good estimation of error. In practical applications, it is very difficult
to obtain prior knowledge or detailed estimation of the error. For this reason, we will introduce two
techniques, Generalised Cross Validation [5] and the L-curve method [6], for determining the appropriate
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Figure 3(a): The reconstruction
result produced by the simple least
squares method, when adding 10%
(filled circle) and 20% (blank circle)

measurement noise respectively.

Figure 3(b): The magnitude
variation of σi (circle), uH

i p̂ (solid
line: 10% contamination and dotted

line: 20% contamination).

regularisation parameters. These techniques do not require prior knowledge of the source strength
distribution or of the contamination noise. According to the full detail of the derivation in references
[5], [7], the proper regularization parameter is determined by minimising the GCV function which can
be defined by

GCV (β) =
(1/M) ‖{I−B(β) p̂}‖2

[(1/M) trace { I−B(β)}]2
(3)

where B (β), the so called influence matrix, is expressed by B (β) = G
(
GHG + β2I

)−1
GH. Another

convenient tool for determining the appropriate regularisation parameters of discrete ill-posed problems
without prior information is the so-called L-curve method [2]. This is a graphical tool with a plot of
the regularised solution against its residual for all valid regularisation parameters. The appropriate
regularisation parameter β corresponds to the maximum curvature of the L-shaped appearance and is
defined by [6]

L (β) =
ρ̃′η̃′′ − ρ̃′′η̃′

(
(ρ̃′)2 + (η̃′)2

)3/2 (4)

where η = ‖qR‖2, ρ = ‖GqR − p‖2. Also η̃ = logη, ρ̃ = logρ and the prime denotes differentiation
with respect to the regularisation parameter β. We have applied these regularisation methods (which
includes the determination of the proper regularisation parameter) to the same geometry of Fig. 1.
Fig. 4(a) shows that good results for the reconstruction by using Tikhonov regularisation with the GCV
technique with two different levels of contamination noise. These can be compared with Fig. 3(a) by
the simple least squares method. In the region of the small singular values in Fig. 4(b), the magnitude
variation of the modulus of uH

i p/σi has been properly suppressed by the chosen regularisation parameter
compared to that from the simple least squares method in Fig. 3(b). Here, the value of β for the 10%
contamination is smaller than that for 20% contamination; in other words, it is necessary to increase the
regularisation for a successful reconstruction with high levels of contaminating measurement noise. It
can be also shown in Fig. 5 that, in the case of application of Tikhonov regularisation with the L-curve
method for the same conditions, good reconstruction is presented as a result of choosing the appropriate
regularization parameters.

4 - CONCLUSIONS
We have introduced the discrete Picard condition, which defines the effects of noise contamination on
the accuracy and the resolution of reconstruction of source strength. We have applied some well-known
regularisation methods including the determination of the proper regularisation parameters without
prior information to the simple geometry. By the application of the discrete Picard condition, it can
be seen easily how chosen regularisation parameters work in the reconstruction of source strength. In
addition, it may become an important criterion for good resolution of reconstruction. Through numerical
simulations, we have illustrated that the application of regularisation methods introduced in this paper
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Figure 4(a): The reconstruction
result produced by Tikhonov

regularisation method with GCV,
when adding 10% (filled circle) and

20% (blank circle) measurement
noise respectively.

Figure 4(b): The magnitude
variation of σi (circle), uH

i p̂ and the
variation of the GCV function with
(solid line: 10% contamination and
dotted line: 20% contamination).

Figure 5(a): The reconstruction
result produced by Tikhonov

regularisation method with the
L-curve method, when adding 10%
(filled circle) and 20% (blank circle)

measurement noise respectively.

Figure 5(b): The magnitude
variation of σi (circle), uH

i p̂ and the
L-shape curve (solid line: 10%

contamination and dotted line: 20%
contamination).

to an ill-posed acoustical inverse problem can provide considerable improvement in the accuracy and the
resolution of the reconstruction.
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