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ABSTRACT
The finite element (FE) method is the most commonly used prediction technique for solving time-
harmonic plate problems. Since the dynamic variables within the plate domain are expanded in terms
of simple, approximating shape functions, a large amount of elements is required to get a reasonable
prediction accuracy and this amount increases with frequency. This may result in large, computationally
expensive models, so that the use of FE models is practically restricted to low-frequency predictions. A
newly developed technique, which is based on the indirect Trefftz method, uses wave functions, which
are exact solutions of the governing partial differential equations, to expand the dynamic variables. The
contributions of the wave functions to the field variable solutions are obtained from a weighted residual
formulation of the boundary conditions. Since an approximation is only involved with the boundary
conditions, the main asset of this method, compared with the FE method, is the small size of the result-
ing prediction model. The major drawbacks of the method is that the prediction model becomes fully
populated and frequency-dependent. This paper compares the performance of the new prediction tech-
nique with conventional FE models for several convex plates with a mixture of various types of boundary
conditions. These examples illustrates that the new technique provides a high (displacement and stress)
prediction accuracy with smaller computational efforts. In this way, the Trefftz-based prediction tech-
nique can be applied up to much higher frequencies, allowing accurate deterministic predictions for the
mid-frequency range.

1 - INTRODUCTION
The finite element (FE) method is practically restricted to low-frequency dynamic simulations due to its
large computational load. Especially for coupled vibro-acoustic problems, for which FE models are no
longer symmetric, the method involves huge computational efforts. Recently, a new wave based (WB)
prediction technique for coupled problems has been developed, which exhibits an enhanced computational
efficiency, compared to the FE method. This paper illustrates that even for uncoupled plate problems,
for which the FE method yields efficient symmetric models, a proper numerical implementation of the
WB technique results also in a computationally more efficient technique than the FE method.

2 - BASIC CONCEPTS OF THE PREDICTION TECHNIQUE

2.1 - Problem definition
The differential equation, describing the steady-state out-of-plane displacement response w (~r) · ejωt of a
flat plate due to a time-harmonic normal point force excitation F · ejωt (see figure 1), is

(
∆2 − k4

b

) · w (~r) =
F

D
δ (~r − ~rF ) in Ω (1)

where ∆ =
∂2

∂x2
+

∂2

∂y2
represents the Laplace operator, kb =

√
ρ2

D
the plate bending wave number,

D =
Et3 (1 + jη)
12 (1− ν2)

the plate bending stiffness with plate thickness t, circular frequency ω, material

density ρ, Young’s modulus E, structural damping factor η and Poisson constant ν.
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Figure 1: Problem definition.

Three different types of boundary conditions (BC’s) are considered, namely
1) clamped BC’s at boundary Γc:

w = 0, Lϑ (w) = 0 (2)

2) simply supported BC’s at boundary Γss:

w = 0, Lm (w) = 0 (3)

3) free BC’s at boundary Γf :

Lm (w) = 0, LQ (w) = 0 (4)

where the linear operators L∗ are defined as follows

Lϑ = − ∂

∂n
(5)

Lm = −D

(
∂2

∂n2
+ ν

∂2

∂s2

)
(6)

LQ = −D
∂

∂n

(
∂2

∂n2
+ (2− ν)

∂2

∂s2

)
(7)

where
∂

∂n
and

∂

∂s
are the derivatives with respect to the normal direction ~n and the tangential direction

~s of the plate boundary, respectively.

2.2 - Response approximation
The deterministic WB technique [1], which is based on the indirect Trefftz approach [2], approximates
w (~r) as a linear combination of wave functions Ψi (~r), extended with a particular solution function
wF (~r − ~rF ),

w (~r) ≈ ŵ (~r) =
n∑

i=1

wiΨi (~r) + wF (~r − ~rF ) (8)
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with

Ψi (~r) = Ψi (x, y) = e−j(kx,ix+ky,iy) (9)

and

(
k2

x,i + k2
y,i

)2
= k4

b (10)

where n is the number of wave functions, and where wi are the unknown wave function contribution
factors. The response of an infinite plate to a normal point force excitation is selected as particular
solution function,

wF (~r − ~rF ) =
−jF

8k2
bD

(
H

(2)
0 (kb ‖~r − ~rF ‖)−H

(2)
0 (−jkb ‖~r − ~rF ‖)

)
(11)

where H
(2)
0 represents the zero-order Hankel function of the second kind.

2.3 - Weighted residual formulation
The approximation ŵ (~r) exactly satisfies the plate equation (1), irrespective of the values of the unknown
wave function contribution factors wi. These factors are merely determined by the BC’s. The residual
error functions along the boundaries are

Rw = ŵ on Γc ∪ Γss (12)

Rϑ = Lϑ (ŵ) on Γc (13)

Rm = Lm (ŵ) on Γss ∪ Γf (14)

RQ = LQ (ŵ) on Γf (15)

Rcw = ŵ on nw corner points of Γc ∪ Γss (16)

RcF = LF (ŵ) on nF corner points of Γf (17)

with

LF = −D (1− ν)
(

∂2

∂n+∂s+
− ∂2

∂n−∂s−

)
(18)

where the corner points are those boundary points for which the normal vector ~n is not uniquely defined.
The directions ~n+ and ~n− in (18) are the normal directions of the two boundary sections to which
the corner point belongs. The residual error functions Rcw and RcF are included for reasons of model
symmetry. By weighing the residuals with functions, obtained from applying the linear operators L∗ to
a weighting function w̃ (~r), the weighted residual formulation of the BC’s becomes

∫

Γc∪Γss

LQ (w̃) ·RwdΓ +
∫

Γc

Lm (w̃) ·RϑdΓ−
∫

Γss∪Γf

Lϑ (w̃) ·RmdΓ

−
∫

Γf

w̃ ·RQdΓ +
nw∑
c=1

LF (w̃) ·Rcw −
nF∑
c=1

w̃ ·RcF = 0
(19)

Using each wave function Ψi (~r) in (8) as a weighting function w̃ (~r) in (19) results in a symmetric,
frequency-dependent wave model

A ·w = f (20)

where vector w contains the unknown wave function contribution factors wi.

2.4 - Wave function selection
The following complete set of wave functions is proposed [1]
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Ψi (x, y) =
{

cos (kx,px) · e−j(ky,py)

e−j(kx,qx) · cos (ky,qy)
(21)

with

kx,p =
pπ

Lx
, ky,p =




±

√
k2

b − k2
x,p

±j
√

k2
b + k2

x,p

, p = 0, 1, . . . , np

ky,q =
qπ

Ly
, kx,q =




±

√
k2

b − k2
y,q

±j
√

k2
b + k2

y,q

, q = 0, 1, . . . , nq

(22)

where Lx and Ly represent the dimensions of the smallest enclosing rectangle of the plate domain Ω
(see figure 1). Desmet [1] proves that a sufficient condition for the wave function selection (21) to
converge towards the exact solution is that Ω is convex. A non-convex Ω requires a division into convex
subdomains. In a numerical implementation the complete set (22) is truncated at finite values np and
nq,

np ≥ kbLx

π
+ 1 and nq ≥ kbLy

π
+ 1 (23)

such that the plate bending wavelength λb = 2π/kb is not smaller than the smallest wavelength λ = 2π/k
in the truncated wave function set.

2.5 - Numerical integration
The construction of the wave model (20) involves the evaluation of complex integrals, which are nu-
merically approximated with a Gauss quadrature rule. For increasing wave numbers kx,p and ky,q, the
complex integration functions in (19) exhibit an increasing spatially oscillating nature. Because the
largest values of kx,p and ky,q depend on kb (see (23)), the number of Gauss points ngp is related to kb,

ngp ≥ max (2kb, ngp,0) (24)

where ngp,0 represents an arbitrary minimal number of Gauss points.

3 - NUMERICAL VALIDATION EXAMPLE
A convex aluminum plate of 1mm thickness is considered, as shown in figure 2(a). Part of the plate
boundary has clamped BC’s, while the remainder is simply supported. Figure 2(b) shows the plate
response at 191 Hz, obtained from a wave model with 96 wave functions, and illustrates the proper
representation of the BC’s.

(a): Dimensions of convex plate. (b): Real part of plate deformation
in m at 191 Hz.

Figure 2: Convex aluminum plate.

Several FE models are constructed using 8-noded quadratic plate elements. Table 1 lists the number of
degrees of freedom in each model and indicates the prediction error at 191 Hz for the normal displacement
at ~r = (0.60, 0.19) (see fig. 2(a)), relative to the result from a very large reference FE model. Table 1
lists also the CPU times, needed for solving the FE models at one frequency using MSC/NASTRAN and
for both constructing and solving the wave model at one frequency using MATLAB. All calculations are
performed on a HP-UX 9000/780 workstation. These results illustrate the enhanced convergence rate of
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the WB technique, in that it provides accurate prediction results with substantially smaller prediction
models and smaller computational efforts than the FE method. In this way, the WB technique can be
applied up to much higher frequencies, allowing accurate deterministic predictions for the mid-frequency
range.

Model # dof’s CPU time in s relative error in %
FE 1 7165 2.1
FE 2 15785 5.9 17.0
FE 3 27765 12.7 3.4
FE 4 43105 23.3 reference
WB 96 2.4 4.7

Table 1: Convergence results.
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