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ABSTRACT
This paper presents an axis-symmetric pressure-velocity finite-difference formulation (PV-FD) for sound
propagation over ground based on Biot theory. Some typical results of simulation are presented and
comparisons with the measurements during airblast tests performed in Haslemoen, Norway are presented
in order to verify the proposed model. The model can also handle range-dependent and topographic
ground. Representative results are presented for two cases of uniform ground with local alterations: one
where a region of the ground is assigned a higher permeability, and the other where the same zone is
replaced by stiffer zone. The case with a hill above homogeneous poro-elastic ground is also considered.
The developed numerical code is shown to be a practical tool for simulating complicated ground features
and a useful tool in calibrating empirical sound prediction models.

1 - INTRODUCTION
In recent years investigators have used different approaches to study the propagation of impulse noise.
The applied methods have included complex impedance ground representation (Don and Cramond,
1987), rigid-porous approximation (Attenborough, 1992), frequency-wave number integration technique
(Schmidt, 1997) and viscoelastic approach (Hole, 1998). Hole et al. (1998) have used frequency-wave
number integration method for the simulation of low-frequency noise and ground vibration in the Nor-
wegian airblast tests in Haslemoen.
This paper presents an axis-symmetry finite difference formulation for modelling sound propagation
in seismo-acoustic media. The numerical simulations comprising synthetic time histories are shown
and comparisons are presented with the measurements during airblast tests performed in Haslemoen,
Norway and the simulations by the frequency-wave number FFP model OASES (Hole et al., 1998). The
influence of range-dependent parameters on sound propagation is considered for highlighting the effect of
the various non-homogeneities. The snap-shots of air pressure and ground particle velocities are presented
to highlight the overall features of sound propagation over a non-homogeneous poro-elastic medium. In
particular, the generation of Mach surfaces in the ground due to the super-seismic propagation of sound
wave is demonstrated.

2 - THEORY AND NUMERICAL METHOD
An axis-symmetry cylindrical coordinate system is considered and a point source is located on z -axis
above the ground. The equation for air pressure P is

∂ttP (x, t) /
(
ρ0V

2
0

)
+∇ · (∇P (x, t) /ρ0) = g (t) δ (x− x0) (1)
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where δ (x) is the Kronecker Delta, g(t) defines the time variation of the point source, x0 specifies the
position of the point source, and V 0 and ρ0 are the sound speed and mass density of the atmosphere. In
poro-elastic ground the velocity of the frame u and the relative velocity of the pore fluid w satisfy Biot
theory (1956)

ρf ü + eρf/φẅ + η/κẇ = D1 (u; αM) + D1 (w;M)
ρü + ρf ẅ = D1 (u; H − 2µ) + D2 (u;µ) + D1 (w;αM) (2)

where for simplicity two vector differential operators D 1 and D2 are used and defined by

D1 (f ; A) = A∇∇ · f +∇B∇ · f
D2 (f ; B) = B∇∇ · f + B∇2f +∇B × (∇× f) + 2 (∇B · ∇) f (3)

In equation (2), φ and e are the porosity and tortuosity of the porous medium, respectively. The poro-
elastic mass parameters are identified by ρ = φρf + (1− φ) ρs where ρs and ρf are the mass densities of
the solid grains and the pore fluid, respectively. κ is the permeability and η is the viscosity of the pore
fluid, µ is the shear modulus of the solid frame. α = 1 − Kb/Ks and M = (φ/Kf + (α− φ) /Ks)

−1,
where Kb, Ks and Kf are the bulk moduli of the solid frame, solid grains and pore fluid, respectively,
and H = Kb + 4µ/3 + α2M . Furthermore, w = φ (U− u) where U is the velocity of pore fluid. On the
interfaces between air and porous medium, pressure and velocities should satisfy the boundary conditions





− 1
ρf

∂jPf = ∂t (uj + wj)

−∂tPf = αM∇ · u + M∇ ·w
−∂tPf = (H − 2µ)∇ · u + αM∇ ·w + 2µ∂juj

0 = µ (∂ruz + ∂zur)

⇒
{

j = z , z = constant
j = r , r = constant (4)

Defining the finite-difference operator

Ωj (f ;A) = Fd · {Dj (f ; A)} , j = 1, 2 (5)

where Fd · {} indicates a finite difference representation of the variable inside the brackets. Using this
operator equation (2) can be expressed as

Fd · {ρf ü + eρf/φẅ + η/κẇ} = Ω1 (u; αM) + Ω1 (w;M) = Ψk
1

Fd · {ρü + ρf ẅ} = Ω1 (u;H − 2µ) + Ω2 (u; µ) + Ω1 (w; αM) = Ψk
2

(6)

where Ψk
1 and Ψk

2 contain only spatial derivatives that need to be evaluated at the current time t = k∆t
in a time marching algorithm. k is time index and ∆t is the increment of time. Using the central finite
difference in time on the left-hand side of equation (6) and rearranging the terms, we get

a11uk+1 + a12wk+1 = b1 + (∆t)2 Ψk
1

a21uk+1 + a22wk+1 = b2 + (∆t)2 Ψk
2

(7)

where aij is the coefficient of uk+1 and wk+1, and bj includes the values of u and w in the time k∆t and
(k − 1)∆t. Interface equations have been treated using an integration technique by Dong et al. (1999).
The absorbing boundary conditions and the stability of the finite-difference schemes have been studied
by several authors (Reynolds, 1978 and Marfurt, 1984).

3 - NUMERICAL RESULTS
We are discussing three groups of ground parameters and they are given in Table 1. Group I corresponds
to a layered ground. Case A is a homogeneous poro-elastic ground (Group II). Case B and Case C are
similar to Case A except for the inclusion of a higher permeability (κ = 10−8 m2) region and a stiffer
(by 50%) region between 100 to 150m, respectively. Case D defers from Case A by the addition of an
elastic rectangular hill (Group III) of height 8.65m on the ground in the range 100 to 150. In addition, it
is assumed that f =0.44, dynamic viscosity of pore air η=1.74 ×10−5, tortuosity e=1.25, sound speed V
0=340m/s, mass density of air ρ0=1.2 kg/m3 in all of the cases. The source function is similar to that
of Hole et al. (1998), and the centre frequency is 30 Hz.
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Group H (m) ρf

(kg/m3)
Kf

(106

Pa)

ρs

(kg/m3)
Ks

(106

Pa)

Kb

(106

Pa)

µb

(106

Pa)

κ
(10−10

m2)
I 1 0.5 1.2 0.13 2700 9060 60.7 25.5 100

2 0.5 - - 1500 68.4 68.4 25.35 -
3 1.5 - - 1500 72.0 72.0 29.4 -
4 2.5 - - 1500 83.85 83.85 33.75 -
5 5.0 - - 1600 96.6 96.6 38.4 -
6 10.0 - - 1700 180.0* 180.0* 60.0* -
7 ∞ - - 1800 281.25* 281.25* 93.75* -

II ∞ 1.2 0.13 2700 9060 60.7 25.5 1.0
III ∞ - - 1500 62.4 62.4 29.4 -

Table 1: Parameters of models used in simulations (* for numerical considerations these parameters
are set lower than those used by Hole et al, 1998).

Fig. 1 displays comparisons of different time histories of overpressure in the air and vertical particle
velocity in the ground using parameter Group I in Table 1. The results are from the finite-difference
model, frequency-wave number model OASES (Hole et al., 1998) and the measurements from the Nor-
wegian blast tests. The sensors are at distances of 195m and 260m from the blast site and are positioned
2m above ground for overpressure and on the ground surface for vertical particle velocity. Examination
of the plots for the various overpressure data shows a fairly good accord in the amplitudes and arrival
times between the cases. Moreover, the simulations reveal a decrease in the dominant frequency of the
sound with distance as observed in the experimental data. For the ground response, the arrivals and
amplitudes of the first peaks are almost the same in the two calculation models. However, the amplitudes
of the subsequent peaks (resulting from reflected and refracted waves in the ground) are different. The
difference could be partly due to absence of body wave attenuation.

(a): Upper panel for pressure at
195m.

(b): Upper panel for pressure at
260m.

(c): Lower panel for ground
velocity at 195m.

(d): Lower panel for ground
velocity at 260m.

Figure 1: Comparison between finite-difference model (solid line), OASES (dashed line) and
experimental data (dotted line).

To discern the influence of permeability of the porous layer on the sound absorption and the induced
ground vibration, different simulations were carried out by decreasing the permeability by 100 times,
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that is to κ = 10−10 m2. Fig. 2 shows a comparison between the results of the overpressure at 2m above
ground (Fig. 2a) and vertical vibration on ground surface (Fig. 2b) with different permeability. These
results support the conclusions by Hole et al. (1998) in that the amplitude of air pressure and the peak
particle velocity decrease with permeability. Furthermore, the dominant frequencies in both overpressure
and ground vibration decrease as permeability increases.

(a): Pressure at 2m above ground. (b): Vertical velocity on ground
surface.

Figure 2: Comparison between the results with different permeability at 195m from the source (solid
line for κ = 10−10 m2 and dashed line for κ = 10−8 m2.

Fig. 3 displays the time histories of overpressure at 2m above ground and vertical velocity on the ground
surface, at distances of 80 and 160m from the source. The results are plotted for three cases: Case A
(dashed line), Case B (dotted line) and Case C (solid line). As expected for Fig. 3a, the first arrivals at
80m are identical in the three cases. At 160m, however, both the amplitude and the dominant frequency
for Case B reduce. This is due to the passage of the sound over the more permeable zone in Case B. In
Fig. 3b at 160m, the amplitude of the first peak in Case C is different from the other two cases due to
the coincidence of the direct wave and P-wave. In addition, there is a second reflected P-wave from the
stiff zone at about 0.7s.

(a): At 2m above ground. (b): On ground surface.
Figure 3: Comparison of overpressures and vertical velocities among case A (dashed line), case B
(dotted line) and case C (solid line) at distances of 80m (upper panels) and 160m (lower panels).

A global picture of sound propagation and its interaction with the ground can be obtained by snap-shots.
Fig. 4 presents the snap-shots of overpressure and vertical ground velocity normalised by overpressure
at a fixed time: (a) the layered model (Group I) and (b) a homogeneous poro-elastic ground with a
hill (Case D). The former shows a complicated deformation pattern in the ground resulting from the
reflection and refraction of P- and S-waves as well as surface waves. A careful examination for this case
shows the presence of Mach surfaces in the ground (although not quite straight due to ground layering).
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Because the velocities of P- and S-waves in the upper layers of the ground are lower than the sound
speed, a super-seismic condition, characterized by the generation of two Mach surfaces, is realized. Fig.
4b shows, on the other hand, large wave reflections from the hill. In particular, there are two pairs of
Mach surfaces, one due to the incident body waves and the other related to the reflected waves from the
hill. This visual feature is one of the most powerful attributes of the finite difference model that allows
one to gain insight into the mechanism of generation and propagation of waves.

(a): Layered ground at 0.1929 s. (b): Ground with a hill at 0.543 s.
Figure 4: Snapshots of overpressure and vertical ground velocity normalized by overpressure.

4 - CONCLUSIONS
A pressure-velocity finite-difference technique is used to simulate sound propagation over a ground with
different properties. Numerical simulations are carried out for both overpressure in air and particle
velocity in the ground. Comparisons are presented with the experimental data and the results by a
frequency-wave number integration method. The results from different ground models are compared and
the influence of range-dependent and topographic properties on sound propagation is presented. Typical
snap-shots of overpressure and ground velocity are presented to illustrate the overall features of sound
propagation over porous media.
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