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ABSTRACT
The prediction of the behavior of complex structures in the medium and high frequency ranges is at stake
here. On the basis of primal or dual hybrid models, the contribution of local free and clamped modes are
derived through an analytical Modal Densification Method (M.D.M.). The principle of this method is to
convert the discrete summations on local modes into continuous ones. Coupling of structures is studied
by using of global boundary variables. Simple fully analytical examples are presented.

1 - INTRODUCTION
Even if the last improvements of classical methods such as finite element methods, modal analysis
methods and SEA are encouraging enough, a wide-range predictive tool is not yet available. For that
purpose, the recent developments of a Modal Densification Method (M.D.M.) are exposed in this paper.
For each sub-domain, two models of coupling are defined: the coupling between local and global degrees
of freedom, the coupling between global degrees of freedom of neighbouring sub-domains.
Once included in a modal densification scheme, we can draw links with propagative kernel of the cor-
responding (semi-)infinite structures. The application to the vibration analysis of structural-acoustic
systems is straight, whether in 1D or 2D cases. Here are presented one-dimensional examples for better
analytical understanding and for comparison with exact or at least existing-method results.

2 - PRIMAL AND DUAL HYBRID MODELS
Each field to be calculated is represented by a set of global and local variables, one of each associated to
a solution of a given loading problem.

2.1 - Displacement or force based formulations
We start with the equilibrium equation under the classical assumptions of linearity for an elastic medium.
This equation is defined with an elliptical operator A whose canonical decomposition is A=T∗T (T∗

differential operator, T stress-displacement operator). If harmonic solutions with pulsation ω are sought
and Green equation is used, the problem can be written in two dual forms.

a (u, v)− ω2 (ρu, v) = −〈f,Dv〉
b (σ, τ)− ω2t (σ, τ) = ω2 〈d,Fτ〉

D and F are boundary operators of displacement and force. Then the boundary conditions along the
coupling boundary can be written:

∀M ∈ Γ FTu = −f

∀M ∈ Γ D
1
ρ
T∗σ = d

2.2 - Intermediate problems
Given a set of solutions {ψi}i=1,k to particular loadings along the boundary Γ, the aim of the intermediate
problem is to find the orthogonal complement of this part of the solution in the subspace of general
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solutions to homogenous problem {φi}i=1,∞. For this purpose, a scalar product is defined: a (., .) in
primal formulation, b (., .) in dual formulation.
In the primal formulation, the functions φi are local free modes, whereas in the dual formulation, those
are the local clamped modes. By projection on the orthogonal complement of the subspace generated
by {ψi}i=1,k, the intermediate problem is built up. Resolution of this problem leads to a resolvent based
expression of the solution.
Hence, we can write the coupling of the sub-domain to neighbouring ones only thanks to the global
boundary variables, like in classical sub-structuring methods.

2.3 - Calculation of the resolvent
When resolving the intermediate problem, the following expressions of the resolvent are obtained:

RF =
(
I− ω2GF

)−1
RC =

(
I− ω2HC

)−1

with
a (GFu, v) = (ρu, v) b (HCσ, τ) = t (σ, τ)

GF and HC can be expressed with projections on the basis of local free modes {φn}n=1,∞ = {xF }n

or local clamped modes {φn}n=1,∞ = {yC}n, with respect to scalar products (ρ., .) and t (., .). Three
methods have been proposed by Jezequel [1] [2] to calculate the resolvent. Estimation of this later is
linked to the problem of truncated basis of the two sub-spaces (the local and the global ones). Truncation
of this set of eigenfunctions gives a Rayleigh-Ritz scheme whereas fixing the eigenvalues above a given
rank behaves like projection scheme. Each scheme bound the real value of resonance frequencies ωFi or
ωCi. However, simply developing the resolvents with respect to ω2 allows us to control the quality of
estimation of R F and RC .

3 - DENSIFICATION APPROACH
Once chosen the method to estimate the resolvent, the modal densification method can be foreseen. This
approach consists in converting all the discrete summations involving the local modal bases {xFk}k and
{yCk}k into continuous ones.
For instance: with n(k) for the modal density and f (ωk) for the function obtained from xFk.xFk pro-
cessed with random phase:

∞∑

k=n

(ρxFk, ψi) (ρxFk, ψj)
ω2

k − ω2
→

∫ ∫

V

ρψi.ρψj

∫ ∞

ωn

f (ωk) .n (k) .dk.dV dV

Following the Modal Densification Method principles exposed in [3], contributions of all the higher range
modes are included in wave like impedance or admittance kernels.

4 - ONE DIMENSIONAL EXAMPLES
Three bar problems are treated with MDM on the basis of the dual model. The displacement field is
sought for boundary loadings in force. It can be demonstrated that the complete set of functions needed
to describe the displacement in bars is:

ψ1 (x) = 1− x

l
, ψ2 (x) =

x

l
, φn (x) = xCn (x) = sin

(nπ

l
x
)

When random phase principle is applied and modal densification processed with lower bound of integra-
tion ωn = 0, the main equation to solve is

ES

l

[(
1 + e

iω
c l + g (ω)

) [
1 −1
−1 1

]
− iω

c

l

2

[
1 −e

iω
c l

−e
iω
c l 1

]] {
A1

A2

}
=

[
1− g (ω) e

iω
c l + g (ω)

e
iω
c l + g (ω) 1− g (ω)

] {
P1

P2

}

with g (ω) =
(
1− e

iω
c l

)
/
iω

c
l and (A1, A2, P1, P2), boundary variables in displacement and force.

Attention must be paid to projections of boundary loadings on local bases. Once the MDM is applied, the
corresponding terms might not be equal to zero anymore (see the second member of the last equation).
Exact solutions are obtained with dynamic stiffness methods.
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Figure 1: Transfer response of a free-free bar.

4.1 - Free-free bar
This equation can be solved in a straightforward manner in the case of a bar with free ends. The
conditions in forces are P1 = F0 and P2 = 0.
The responses to static loadings give the exact static response, whereas the medium and high frequency
range responses are obtained thanks to the modal densification results on local modes.

4.2 - Free-clamped bar
The boundary conditions imposed are P1 = F0 and A2 = 0. The response in displacement (amplitude
and phase) is observed at the point where the force is applied.

4.3 - Free coupled bars
Two bars are assembled end to end. They have different mechanical characteristics. The assembly is
excited at the uncoupled end of the first bar whereas the displacement is observed at the free end of the
second bar. Say boundary variables are

(
A
′
1, A

′
2, P

′
1, P

′
2

)
for bar I and

(
A
′′
1 , A

′′
2 , P

′′
1 , P

′′
2

)
for bar II. The

conditions of continuous displacements and forces between the two bars are stated as:

A
′
2 = A

′′
1 , P

′
2 = P

′′
1

5 - CONCLUSION
An overview of the last improvements of the Modal Densification Method have been illustrated by
examples on bars. The coupling conditions are easy to describe and to implement.
Moreover, results in amplitudes and phase are in good agreement with those obtained by the dynamic
stiffness method.
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Figure 2: Displacement and phase at the point of loading of a free-clamped bar.
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Figure 3: Displacement at the end of an assembly of two different bars.


