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ABSTRACT
The TLM method has been used to study the propagation of a sound pulse from a point source above
ground. The ground is modelled as a porous material with rigid pores. The paper discusses some general
features of the TLM method and presents calculation results from a 3D axisymmetric realization.

1 - INTRODUCTION
Numerical methods, like the finite difference and finite element methods, receive increased interest in
calculations of sound propagation above ground because of the rapid development in computational
power. The flexibility given by such techniques allow us to study problems where ground geometry and
parameters, as well as the air’s density and sound velocity, might have local variations. In addition to
the above model types, which are based on the differential equations governing the system, the so-called
lattice gas models are undergoing rapid development. In such models, space is discretized by nodes and
connecting line segments and the behaviour of masses, energy quanta, or signal pulses moving along
these lines are studied under the application of propagation, redistribution, and collision rules. The
models are usually implemented in the time domain directly. Locality and parallelism are characteristic
features. Locality because updating of nodal values only depend on the nodal values at the node itself
and its immediate neighbours at the previous time step, and parallelism because the same rules apply at
every node in the system. Parallel computer processing is therefore well suited to this type of modelling.
An attractive feature of such modelling is that the nodal updating rules are normally very simple and
therefore rapid to compute. Good numerical stability is also a characteristic.
The TLM method, or the Transmission Line Modelling method is one such approach. It represents
attempts to model the physical processes more directly, in fact, the TLM method can be said to be a
discretized realization of Huygens’ principle. Kagawa [1], has shown its accuracy to be equivalent to that
of a second order finite difference scheme.

2 - THE MODEL
A signal moving along a line will divide its energy between the intersecting transmission lines, when
arriving at a node. Fig. 1 illustrates the situation for a 2D model, we see the energy being equally divided
between the 4 directions. For pressure reflection and transmission coefficients, R and T, transmission
line theory tells us that these will be -1/2 and +1/2 respectively. A 5’Th line in the form of a loop
can be introduced at each node to provide an additional path for the energy. This is of interest when
a local reduction in speed of sound or damping of the system is required. See [1] for details. A full 3D
model can also be described in a cartesian coordinate system. However, if assumptions can be made of
axisymmetry, the calculations can still be done in a modified 2D framework, and considerable computer
space and calculation time can be saved.
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(a): Constant velocity model. (b): Variable velocity model.
Figure 1: A 2D model for TLM calculations.

The matrix equation relating pressure values reflected and transmitted from a node to the incident ones
for 2D systems is written as:
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where f 1 is −1− (η + ζ) /2, and f 2 is (η − ζ − 4) /2. η and ζ are related to the reduction in sound speed
and damping coefficient of the medium respectively. For 3D axisymmetric systems, the coefficients of the
updating matrix are modified by a density defined for each individual line being inversely proportional
to the distance from the symmetry axis, for details see [1].
Boundary conditions are applied by matching individual transmission line impedances to load impedances.
This yields a set of reflection and transmission coefficients that can be used for waves travelling from
one ρc medium to another. In the present case, where the ground material is considered as a porous
material having a rigid frame, the transmission into the material is characterized by a strong damping,
having the character of diffusion more than propagation. It is equivalent to the ”second compressional
wave” in the Biot theory for wave propagation in porous materials.
One dimensional harmonic wave propagation in such a material has a damping coefficient close to γ =
2
√

ωφ/ρ′c′ for highly damped materials, where φ designates the flow resistance, and primed quantities
ground material densities and velocities adjusted for porosity and tortuosity With ks and Ω, designating
the structure factor and porosity of the material respectively, ρ

′
= ρks/Ω and c

′
= c/

√
ks [3].

Reflection coefficients for such materials can, again for cases of highly resistive grounds, be approximated
by

R =
φ2 +

(
ωρ

′
)2

− (γρc)2

φ2 + (ωρ′ + γρc)2

where unprimed quantities are the ones of the medium above the ground. The TLM model is a time
domain one. Source signals must therefore be defined which are narrow enough in frequency content to
justify use of the above harmonic expressions. In the present study, we have made use of Ricker type
wavelet functions.

3 - RESULTS
Figure 2 shows that the system responds by differentiating the signal. As the field parameter of the
model is acoustic pressure, the source signal therefor corresponds to a velocity source input.
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Figure 2: The response at indexed cell lengths directly in front of the source to a point source at the
axis of symmetry; the input signal was a Gaussian function f (t) = e−π2(f0t−1)2 , where f 0 is the centre

frequency of the signal.

The next figures 3 are from a calculation of sound propagation above a flat ground with a trench. The
porous material was described with ks=10, Ω=0.1, φ=100000 Pa s/m2, while the fluid parameters are
the ones of air. The figures 3a, 3b, and 3c show snapshots of the wave in the vicinity of the trench.
Characteristic features are the direct wave, the ground reflection and the interaction of the waves with
the trench geometry. The latter shows that edge diffraction is an important phenomenon. The calculation
domain was defined as a 800 ×800 cell system. Each transmission line, or cell length, is 0.0962m. The
porous material is 80 cells deep, and the trench is positioned between 400 and 600 cell-lengths in the
horizontal direction. The central frequency, f 0 was 100Hz for this calculation.
The outer boundaries of the domain are given a ρc load impedance modified by a directional term
with respect to the source position. Matching the individual impedance line impedances to such a load
impedance give reflection coefficients R = 1 − √

2cosθ/1 +
√

2cosθ, where θ is the angle between the
surface normal and the line of sight to the source. This absorption condition is not perfect and will give
some reflection. We are presently testing other boundary absorption schemes.
In a further test we modelled the air / porous material interface in a 1D simulation. Using the same
material parameters as for the figures 3. Figure 4 shows time histories at three different positions. The
interface between the media is at 2.5m. The upper plot shows the incident and reflected signal at a
position well away from the interface. The middle and lower plots show pressure signals a little into the
porous material. The rapid decay is evident.

4 - CONCLUSION
We have shown that the TLM method, like the finite difference and finite element methods, can be
used to model sound transmission over grounds having big changes in the geometry. The method is
relatively easy to program, and from the point of view of numerical stability it has advantages. Very
large parameter changes over an interface can be handled.
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Figure 3(a): The sound field at
170ms.

Figure 3(b): The sound field at
272ms.

Figure 3(c): The sound field at
340ms.
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Figure 4: Time histories at positions x=0.48, 2.65, and 2.79m.


