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ABSTRACT
Vortex induced self-sustained oscillations of the grazing flow along a Helmholtz(-like) resonator is con-
sidered at moderately high acoustical amplitudes. A modification of the single vortex model proposed
earlier in the literature is discussed to take more accurately the effect of the geometry of the edges into
account. We assume that the vorticity is concentrated into line vortices convected at a constant speed
along a straight line from the upstream edge to the downstream edge. We propose a procedure in order
to avoid the spurious singularity of the downstream sharp edge. The model predicts qualitatively the
critical Strouhal numbers for oscillations and provides an estimation of the pulsation amplitude within
a factor two compared to original models and experimental results. In particular the model removes
spurious higher order hydrodynamic modes observed in earlier models.

1 - INTRODUCTION

1.1 - Helmholtz-like resonator or acoustical monochromator
Self-sustained oscillations of the grazing flow along a deep cavity are driven by coupling between the
instability of the shear layer and the resonant acoustical field in the cavity (Rockwell & Naudasher [1],
Nelson [2], Ziada [3], Bruggeman [4], Kriesels [5]).
We consider here the case of a Helmholtz-like resonator: a cavity of depth Lc and cross section Sc

connected to the exterior (free field) through a neck of length Ln and cross section Sn (Fig. 1).

The Helmholtz resonance frequency is defined as ωH = c0

√
Sn

ScLcLn
where c0 is the speed of sound in

the air. In our case, ωHLc/c0 is not sufficiently small to consider the resonator as compact. However, the
configuration retains the property that higher resonance frequencies are not harmonic of the fundamental
resonance ω0. Therefore, the acoustic field will be dominated by a component ω near ω0 allowing a fair
description of the oscillation as a pure harmonic. We can call this an acoustical monochromator (Gilbert
[6]).
As we consider low frequencies, the acoustical field inside the resonator can be described in terms of two
travelling waves while the acoustical flow in the neck is locally incompressible (Lnω/c0 ¿ 1).

1.2 - Previous works from literature
Elder [7] and Howe [8] proposed simplified models where the shear layer response is assumed to be linear.
Such an approach is limited to very low amplitudes (Bruggeman [4]). Typically, û/U0 (where û is the
average acoustical velocity amplitude across the shear layer and U 0 is the main flow velocity) should be
O

(
10−3

)
or lower.

When û/U0 = O (1), the acoustical perturbation induces a break down of the shear layer into discreet
vortices and the amount of vorticity shed depends on the acoustical field amplitude (Howe [8]). This
high amplitude regime has been studied by Kriesels [5].
Bruggeman [4] introduced the concept of moderate amplitudes û/U0 = O

(
10−1

)
for which he assumed a

break down of the shear layer into discreet vortices but no significant influence of the acoustical field on the
amount of vorticity shed. This means that the acoustical field triggers the formation of a discreet vortex
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Figure 1: 2D-scheme of the cavity.

which absorbs the vorticity shed at the upstream edge of the opening of the cavity. This corresponds to
the model of Nelson [2] for the resonator and of Holger [9] for the edge-tone. A further simplification is to
assume that the vorticity is concentrated into line vortices convected at a constant speed UΓ along a line
joining the upstream to the downstream edge of the cavity. We use for UΓ the value 0.4×U0 proposed by
Bruggeman [4]. Using this model, Bruggeman [4] and Howe [8] obtained predictions of critical Strouhal
numbers for strong oscillations for sharp edged cavity (Fig. 1). The predicted amplitudes are however
much larger than the observed amplitudes (at least a factor three).
A major problem is that in the model the vortex path hits the singularity of the downstream edge. This
does not occur in real life (Bruggeman [4], Howe [8]). This problem can be reduced by considering a
cavity with rounded rather than sharp edges. This removes the singularity. For such a cavity, Hirschberg
[10] proposed to assume a uniform acoustical velocity at the shear layer. The comparison with experi-
ments (Bruggeman [4]) and numerical simulations (Kriesels [5], [11]) shows that this model predicts the

acoustical source power within a factor two for Strouhal numbers Sr =
ωW

2πU0
≈ 0.5 based on the width

W of the cavity opening in the streamwise direction.
We propose an alternative model for a sharp edged cavity.

2 - SIMPLIFIED MODEL FOR A SHARP EDGED CAVITY
The key idea of our model is that we assume that the upstream singularity of the acoustical field is
essential while the effect of the downstream one should be reduced by the finite size of the vortex core
and departure from the imposed vortex path (Bruggeman [4], Howe [8]).

2.1 - Determination of the acoustical velocity in the neck of the resonator
As proposed by Bruggeman [4], the locally incompressible acoustical velocity field at the shear layer
position is calculated by conformal mapping and potential theory. The conformal mapping used is based
on the Schwarz-Christoffel transformation (Milne-Thompson [12]) of a physical polygone into a complex
plane. In order to avoid the spurious singularity of the downstream sharp edge, we assume a geometry
which is not the actual opening geometry (Fig. 2).
This assumption enables us also to obtain an explicit relation for the conformal transformation of the
physical plane (z -plane) to the complex plane ( τ -plane) (Fig. 3).
By means of the potential theory and using a Newton method for integration, we can determine the
acoustical velocity in terms of the vortex position. Near the singularity (upstream sharp edge of the
cavity), for simplicity’s sake, we determine the acoustical velocity by using the fact that the acoustical
flow velocity behaves locally as z−1/3 as a function of its position z relative to the sharp edge (Prandtl
[13]). The results are summarized in a least square fit formula.

2.2 - Modelisation of the cavity
The system is described as a forced linear acoustical system:
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Figure 2: Actual geometry of opening (left) and geometry (right) used to calculate the acoustical field
distribution by means of a conformal mapping.

Figure 3: Conformal mapping.

M
d2ξ

dt2
+ R

dξ

dt
+ Kξ = F (t) (1)

where x is the acoustical displacement, ξ =
∫

ûdt corresponding to the average of the acoustical dis-
placement in the neck. The damping coefficient R was calculated from the measured quality factor (
Q ≈ 30) of the resonator in absence of main flow. The right-hand side of the equation of motion (eq. 1)
represents the sum of the ’external’ forces (turbulent losses and Coriolis force) which act on the acoustical
mass-spring system.
Vortex shedding at the inner side of the neck and the corresponding turbulent dissipation is described
by means of a quasi-stationary model (Hirschberg [10]) so that we find using the Powell/Howe analogy:

F (t) =
∫

Vn

−ρ0 (~ω × ~v)︸ ︷︷ ︸
Coriolis force

.
~u′

|dξ/dt|︸ ︷︷ ︸
Geometric factor

dV − 1
2
Snρ0

∣∣∣∣
dξ

dt

∣∣∣∣
dξ

dt︸ ︷︷ ︸
Turbulent losses

(2)

The Coriolis force −ρ0 (~ω × ~v) can be written in terms of the circulation Γn (t) (Nelson’s model [9]).
Finally, assuming that the displacement of the acoustical particles is harmonic: ξ = ξ̂cos (ωt), we obtain
a set of two equations for ξ̂ and ω by multiplying equation 2 by respectively cos (ωt) and sin (ωt) and by
integrating over a period of oscillation. The equations are explicit and we get a system of two equations
of the second degree for ξ̂ and ω which is easy to solve numerically.
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3 - RESULTS
The method proposed in the previous section provides an analytical solution of the acoustical particle
displacement ξ̂ in the neck of the resonator. This method is applied to the original models of Hirschberg
[10] and Bruggeman [4] (section 1). Therefore, the results present the ratio |u′| /U0 between the acoustical

velocity amplitude |u′| = ξ̂ω and the main flow velocity U 0 in terms of the Strouhal number Sr =
ω0Weff

2πU0
(where Weff is the effective width of the neck).
The results obtained for two configurations are shown in figure 5a. The main characteristics of the
different models are summarized in a scheme (Fig. 4).

Figure 4: Configurations studied: (1) model 1: uniform acoustical velocity and turbulent losses during
half an oscillation period (Weff=0.03); (2) model 2: non-uniform acoustical velocity and turbulent

losses during an entire period (Weff=0.03).

The original model of Hirschberg [10] overestimates higher order hydrodynamic modes while the proposed
model predicts only two hydrodynamic modes. The difference in the pulsation amplitude predicted for
the two different configurations can be qualitatively explained by means of the Vortex Sound theory
(Howe [8]). For the configuration 1 (Fig. 4), the initial power absorption is lower due to the rounded
downstream outer edge. Furthermore, the sound absorption is also low at the rounded inner edges.

Figure 5(a): Predicted pulsation

amplitudes
∣∣∣∣
dξ

dt

∣∣∣∣ /U0 in terms of the

Strouhal number fWeff/U 0 for
model 1 (−−) and model 2

(− − −).

Figure 5(b): Predicted and
measured pulsation amplitudes in
terms of the Strouhal number for
model 1 (−−; +) and model 2

(− − −; o).

Compared to experimental results (Fig. 5b), the original model of Hirschberg [10] provides a prediction of
the pulsation amplitude within a factor two for the first hydrodynamic mode. The simple model proposed
for a sharp edged cavity predicts the pulsation amplitude within a factor two which is an improvement
compared to the original model of Bruggeman [4] and Howe [8]. Moreover, the proposed model does not
predict spurious higher order hydrodynamic modes. The high value of the observed Strouhal number
compared to the measured Strouhal number is expected to be due to the deviation from a straight vortex
path at high acoustical amplitudes. This hypothesis has been discussed by Kriesels [5].
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