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ABSTRACT
A structure designed to be spatially periodic in its configuration cannot be exactly periodic due to
material, geometrical, and manufacturing variabilities. The presence of small irregularities in a nearly
periodic structure may influence the propagation of vibration strongly and localise the vibration modes.
A number of papers has been addressed to localisation phenomena in simplified structures. This paper
will instead focus on the mean vibration field and its influence on sound radiation in a plate stiffened by
beams.

1 - INTRODUCTION
A structure designed to be spatially periodic in its configuration cannot be exactly periodic due to
material, geometrical, and manufacturing variabilities. The presence of small irregularities in a nearly
periodic structure may influence the propagation of vibration strongly and localise the vibration field.
Anderson [1] described localisation phenomena for nearly periodic systems in solid state physics, concern-
ing the transport of electrons in an atomic lattice (leading to a Nobel Prize). Obviously, localisation also
occurs in disordered periodic structural systems, but its theoretical investigation is more difficult than
that of a one-dimensional atomic lattice, since governing equations for structural systems are generally
more complex. However, a number of papers has been addressed to localisation phenomena in simplified
structures.
Hodges and Woodhouse [2] describe the theory and some simple experiments carried out to demonstrate
the phenomenon of Anderson localisation in an acoustical context. A simple chain of pendula coupled
by springs and a string with nearly equally spaced point masses is studied. A perturbation method was
used in the statistical treatment and a localisation factor was calculated in the form of an exponential
decay constant. Pierre and Dowell [3] investigated the localisation of modes of free vibration in discrete
disordered structural systems consisting of coupled subsystems. The degree of localisation is depen-
dent upon two parameters: the coupling between and the mistuning among the component systems.
Perturbation methods are used for slightly disordered systems because they are cost effective. At the
same time, they lead to very accurate results for small perturbations. Cai and Lin [4] treat a generic
one-dimensional nearly periodic system using transfer matrixes. The localisation factor is defined as the
limit of the logarithm of the transmission part in the random matrixes. Thus, transmitted waves have an
average exponential decaying rate. Other papers on the subject of localisation of free wave propagation
in nearly periodic structures can be found in [5], containing a survey of periodic and nearly periodic
solution techniques.
In problems concerning sound insulation in e.g. dwellings the excitation of the system can be seen as a
superposition of spatially harmonic pressure fields. The system will then vibrate and radiate sound in
the receiver room.
None of the papers concerning nearly periodic systems above deals with the questions of acoustical
excitation or radiation. Whether the localisation phenomena influence these problems is still an open
question. Moreover, the described analysis methods are not suited for this type of problem, they consider
free wave propagation or excitation in one bay and propagation in the rest of the system. Another
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problem with the described analyse methods is that they are only suited for one-dimensional problems
and therefor not suited for i.e. systems built up by plates [5].
This paper will instead focus on the mean vibration field caused by spatial harmonic excitation and
its influence on sound radiation in a plate stiffened by supports. The localisation factor found in the
mentioned literature can be seen as a virtual damping. The aim of this paper is to investigate if additional
damping, in an average sense, also is found for spatially harmonic driven systems. To the author this
problem seems to be important in the fields of structural and building acoustics.

2 - THE PROBLEM
Consider a linear differential operator L [·]. A inhomogen differential equation can then be written

L
[
w (x) eiωt

]
= F (x) eiωt (1)

for a time harmonic displacement and the time harmonic term eiωt is henceforth suppressed. In equation
(1) w can be a displacement and F a force or a pressure field. Consider a plate resting on equally spaced
simple supports. Take the linear differential operator in (1) to be that of a thin plate in bending,

L [w] = D′∆∆w − ω2m”w, L = D′ (α2 + γ2
)2 −m”ω2 (2)

where γ is the excitation wavenumber in the z -direction, w is the displacement, D’ is the bending stiffness
and m” is the mass per unit area. The influents of fluid loading is neglected In order to simplify, set
γ=0. Moreover, let the boundary condition be the homogenous Dirichlet conditions, w (nl) = 0, i.e.
simply supported. Let the driving force be a space harmonic force Fd = e−ikxx. Material damping can
be introduced as a complex bending stiffness D · (1 + iη). When the periodicity is perfect the solution
can be found with methods similar to Mace [6]. Consider a small divergence from the exact periodic
formulation.

L [w (x)] = Fd (x)−
∞∑

n=−∞
Fnδ (x− nl − ϕn) (3)

where ϕn is a random number in some given distribution, and the standard deviation σϕ is σϕ ¿ l. In
this case we have no general periodic description. Formally the solution is

w (x) =
1
2π

∫ ∞

−∞

F̃d (α)
L (α)

e−iαxdα− 1
2π

∫ ∞

−∞

∞∑
n=−∞

Fn
e−iα(x−nl−ϕn)

L (α)
dα (4)

The jet unknown parameters Fn can be found by boundary conditions at x=nl, leading to an infinite set
of equations. In the periodic case the solution is found solving for only one boundary condition.

2.1 - Statistic considerations
We now try to take the expected value of the nearly periodic displacement.

w (x) = E [u (x)] (5)

Thus, the expected value is taken on a sum of functions of independent random variables. The rules for
the expectation operator can then be used. The reaction force is a function of every stochastic variables.
However, if the reaction force is independent of the harmonic term, the expectation of the reaction force
can be separated from the harmonic term,

E
[
Fneiαϕn

] ≈ FnE
[
eiαϕn

]
(6)

It can now be assumed that the expected displacement and force field is to be periodic.

2.2 - Uniformly distributed
Take ϕn to be a random number, uniformly distributed in the range ϕn ∈ {−a, a}. The corresponding
probability density function fϕ is given as

fϕ (x) =

{ 1
2a

if x ∈ {−a, a}
0 otherwise

(7)

Thus, the expected value taken at each term in the sum in (20) is
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E
[
eiαϕn

]
= sinc (αa) (8)

which yields the mean displacement. The jet unknown parameter F0 can be found by boundary conditions
at x=nl=0. The boundary condition is fulfilled in a average sense.

2.3 - Numerical example
As a numerical example, consider the plate to be a chipboard plate whit Young’s modulus E=4.6×109

N/m2, density ρ=650 kg/m3, damping η=0.03 and thickness 5 mm. The periodic length is L=1m.
Gracing incidence, that is θ = π/2, kx = ksinθ.
In fig. 1 the magnitude of the vibration velocity is plotted and a peak is studied closely. Five different
cases are studied; the periodic case and four cases with uniform distribution with increasing spread. The
frequency region is taken from 90 to 150 Hz, with a frequency resolution of 0.01 Hz. The position is
x=2L/3.

Figure 1: Magnitude of velocity due to pressure excitation, x=0.67 m, a) with damping, b) no
damping.

2.4 - Conclusions from the numerical example
The tendency in the numerical example is that increasing the amount of irregularity shifts the peaks to
increasing frequencies and in most cases decreases the height of the peaks. It can therefor be concluded
that the irregularities increases the stiffness and the damping in the expected vibration field if material
damping is present. If material damping is not present the irregularities increases only the stiffness.

3 - THE ACOUSTIC FIELD AND THE RADIATION
The vibration of the plate will cause acoustic radiation on the side opposite of the excitation, a trans-
mitted pressure field. The Fourier transformed transmitted pressure fields are

p̃t (α, y) = −ω2ρ · w̄ (α)
µ (α)

· e−µ(α)y, y > 0 (9)

where

µ2 ≡ α2 + γ2 − k2
o

The transformed displacement field have only discrete wave components and are therefor easy to inverse
transform, and then is the radiation determined.

4 - CONCLUSIONS
The effects of small irregularities in a nearly periodic spatially excited structure is studied with a new
statistical approach. The method used is suited for sound insulation problems. Also the acoustic radiation
is considered.
The irregularities causes extra damping and stiffness in the mean vibration field if material damping is
present. If no material damping is present only a increase in the stiffness can be seen.
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