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ABSTRACT
This paper deals with high frequency analysis of point excited fluid loaded plates. Acoustic and structural
energy densities are calculated by a power flow approach. Coupling between subsystems is characterized
by local power exchanges. Three radiation mechanisms are involved in these exchanges: radiation of
supersonic waves, radiation from edges and direct radiation from the excitation point. These radiation
processes induce local energy losses for the panel. They correspond to power sources for the acoustic.
Using an integral power flow approach, energy fields are derived and compared to frequency averaged
experimental results.

1 - INTRODUCTION
Radiation of structures is a crucial matter in the industry because of the increasing importance of the
acoustic comfort. Nevertheless, the audible frequency range often lies above the classical approaches
possibilities. Statistical Energy Analysis [1] was developed as an alternative method for high frequencies,
and was extensively applied to vibroacoustic problems. Working with energy variables, this approach
matches well with averaged measured datas when fields are diffuse enough. Exterior space radiation is a
problem of practical importance where acoustical fields are not diffuse.
The power flow analysis describing energy and power flow densities inside the subsystems does not need
the diffuse field assumption, since a local description is achieved. Starting with the local power balance,
energy kernels for structures and acoustics are determined and used in a boundary integral formulation [2].
The coupling between plates and acoustical media is characterized by local power exchanges, depending
on the frequency: when structural waves are subsonic (i.e. below the so-called critical frequency),
radiation is located on structural discontinuities. Diffraction phenomena give rise to boundary acoustical
power sources (edges and excitation points are reported in this paper). Discontinuities act as dissipative
elements for the structural energy. In the supersonic frequency range the radiation of the whole surface
of the plate should also be considered. Boundary power sources are thus located on the whole surface
and structural energy losses are taken into account by a continuous damping factor.
Section 1 deals with the calculation of power exchanges involved in radiation process. Realistic direc-
tivities of the power being radiated are determined, allowing an accurate description of the acoustical
energy field. The energetic calculation is detailed in Section 2. In Section 3 an experimental validation
is performed with an unbaffled free plate.

2 - POWER BALANCE FOR RADIATION
Using the locality principle valid for high frequencies, we assume that radiation phenomena may be
characterized with isolated parts of the system and then introduced in the whole system resolution.
Edge, excitation and propagative waves radiations are successively calculated. The fluid density is ρ
and the fluid wavenumber k. The fluid loaded plate propagative wavenumber is noted ks, and the plate
stiffness D. The pulsation is ω.

2.1 - Edge radiation
Consider a structural wave impinging the edge of a plate with an incidence θs. Reflection process produces
sound radiation. The phenomenon depends strongly on the boundary conditions of the plate and the
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acoustical medium. The fully coupled calculation requires the use of the Wiener-Hopf technique [3]. We
propose here a simplified approach valid under the light fluid assumption. The calculation is performed
using Fourier transform U of the in vacuo displacement field due to the impinging and reflected waves
on the normal to the edge [4]. We note θ and ϕ the spherical angles around the edge line. The diffracted
pressure corresponds to the branch cut contribution of the pressure Fourier integral and may be evaluated
by the saddle method. The specific intensity in (θ, ϕ) direction is expressed in terms of the impinging
structural flux Is:

Prad (θ, ϕ) = Σedge (θs, θ) δ (ϕ− ϕrad (θs)) Is with kcosϕrad = kssinθs (1)

and the edge radiation efficiency:

Σedge (θs, θ) =
4πρω2

k

|U (Ksinθ)|2
< (D (k3

s + k2
sk∗s))

The energetic structural reflection coefficient must take into account the part of power being diffracted:

R (θs) = 1−
∫ π/2

−π/2

Σedge (θs, θ) dθ (2)

2.2 - Excitation radiation
The plate is excited by a point force or moment. The same analysis as in the previous calculation is
performed using the point drive impedance Y (instead of U ) to describe the response of the fluid loaded
infinite plate [5]. The diffracted specific intensity deriving from the saddle point contribution is expressed
in spherical coordinates in terms of the injected power Pinj :

Prad (θ) = Σexci (θ) Pinj

with excitation radiation efficiency:

Σexci (θ) =
ρωk

4π2Pinj
|Y (ksinθ)|2 (3)

The power being supplied to the fluid loaded plate system is the sum of the diffracted power and the power
injected in the plate: Pinj=Pstruc+Prad. The term Pstruc is calculated by expressing the structural flux
carried by the propagative travelling waves. Writing the residue contribution of the propagative pole ks

in the displacement integral and using asymptotic expressions of the Hankel function, the power supplied
to the plate is obtained:

Pstruc =
ω

(
|F |2 + |ksM |2

)

16Dks

∣∣∣∣1− j
ρω2

4D
k−2

s

(
k2 − k2

s

)−3/2
∣∣∣∣
−2

(4)

2.3 - Supersonic waves radiation
The power radiated by a supersonic travelling wave is derived in equation (5). Substituting the prop-
agative forms of displacement and pressure in the fluid loaded infinite plate equations, the directional
specific intensity may be expressed in terms of structural power flow carried by the travelling wave. ϕ
denotes the spherical angle with the normal to the plate.

Prad (ϕ) = Σsurfδ (ϕ− ϕrad) Is with sinϕrad = ks/k (5)

and with the surface radiation efficiency

Σsurf =
ρω2<

((
k2 − k2

s

)1/2
)

(k2 − k2
s)< (D (k3

s + k2
sk∗s))

This proportionality relation shows that continuous radiation is a loss of structural energy corresponding
to a damping factor: ηrad = csΣsurf/ω (6), cs being the group velocity.

3 - DERIVATION OF ENERGY MODEL
Energy calculation is derived using a power flow integral approach. This method is an alternative to the
EFEM [6] and was successfully developed for 1D, 2D and 3D systems, and for coupling between systems
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of the same dimension [2]. It is here devoted to vibroacoustic coupling. Energy and power flow kernels
(noted G and H ) are used to describe the fields inside the subsystems: assuming that propagative fields
are uncorrelated, the linear superposition principle is applied on energy variables. Energy and power flow
densities are the sum of direct contributions emanating from sources ρ inside the system, and diffraction
contributions coming from source σ located on the boundaries:

W (M) =
∫

Ω

ρ (S)G (S, M) dS +
∫

δΩ

σ (P )G (P, M) dP with G (r) =
e−mr

cγ0rn−1

Kernel expressions depend on the dimension n of the systems. m is the attenuation factor, c is the group
velocity and γ0 is the solid angle of space. Kernels are solution of the local power balance for point
excited infinite systems.
Structures are first solved taking into account the dissipation phenomena due to radiation (eq. 2,4,6) and
corresponding to the previous local problems. Then acoustical media are calculated using the expressions
of the determined directional radiated intensities (eq. 1,3,5).

4 - EXPERIMENTAL VALIDATION
An experiment was performed in an anechoic chamber (Fig. 1). The plate is 1m large and long, 1.5mm
thick, in aluminum. Its critical frequency in air is 4kHz. It is excited by a shaker with an impedance
head in order to measure the power being injected in the structure. Energy acquisitions are performed
on several points of the plate by a laser velocimeter. Three microphones were used to measure acoustical
energy. Acquisitions are performed in sweep sine starting at 3.2kHz and covering 2 octaves (up to
12.8kHz). Two series of acoustical measures are performed, corresponding to microphones lying parallel
or normal to the plate (Fig. 1).

Figure 1: Experimental device.

Measured datas are averaged over several acquisitions and by 1/9 octave band (Fig. 2).

Figure 2: Experimental datas exploitation.

For both microphone positions, power flow calculations are compared to experimental datas and display
a very good correlation (Fig. 3). It is remarkable that variations of acoustical energies strongly depend
on the location of the microphones and that this dependence is well predicted by the model. Spatial
repartition is thus well described by the power flow analysis.
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Figure 3: Frequency variations of acoustical energies for the 3 microphones of both antenna positions;
-o- experimental; -*- calculated.

5 - CONCLUSION
Efficient description of non diffuse radiated acoustical energy fields is obtained by integral power flow
method, using different kinds of realistic boundary power sources.
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