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ABSTRACT
In this paper hybrid linear/nonlinear methods are compared concerning accuracy, calculation time and
the possibility to perform parametric studies. To this end a model problem consisting of a simple piston
restriction system connected to a straight open pipe is studied. In this model, the piston and restriction
are considered as the source part, modeled nonlinearly, while the pipe is modeled linearly.

1 - INTRODUCTION
In duct acoustics the fundamental sound generating mechanisms must often be described by nonlin-
ear time domain models, while a linear frequency domain model is sufficient for describing the sound
propagation in the connected duct system. This applies both for fluid machines such as IC-engines
and compressors and for various wind instruments. Hybrid methods for coupling a nonlinear source
description to a linear system description have been proposed by several authors.
The harmonic balance method has previously been used in microwave circuits [1] as well as musical
applications [2]. Gupta et al [3] and Mutyala et al [4] suggest other methods that are based on the same
type of iteration procedure, but perform the iteration coupling in another way. The methods presented in
[1-2], [4] all calculate the coupling between the time and the frequency domains in the frequency domain
by an impedance or admittance relation. In [3] the linear and nonlinear parts of the system are coupled
by calculating a convolution integral in the time domain. Davies et al [5] as well as Gazengel et al [6]
have proposed the use of convolution integrals for solving the complete system without iterations. The
convolution is used as a boundary condition to the system of nonlinear differential equations, which is
solved by some suitable numerical method.
After this short introduction some different methods for calculating the coupling are presented. The
problem used for testing the different methods is given together with governing equations. A comparison
of the methods follows, and finally some conclusions are drawn.

2 - PRESENTATION OF METHODS

2.1 - The harmonic balance method
The fundamental idea of the harmonic balance method (HBM) is to decompose the system in two
separate subsystems, a linear part and a nonlinear part. The linear part is treated in the frequency
domain and the nonlinear part in the time domain. The interface between the subsystems consists of
the Fourier transform pair. Harmonic balance is stated when a chosen number of harmonics N satisfy
some predefined convergence criteria.
First an appropriate unknown is chosen to be used in the convergence check, which is performed in the
frequency domain. Then the equations are rearranged in a so-called convergence loop. This is done with
all equations, linear or nonlinear in time domain and linear equations in the frequency domain. We start
with an initial value of the chosen unknown, apply the different linear and nonlinear equations according
to the defined convergence loop. Finally we have a new value of the chosen unknown. If the difference
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between the initial value and the final value of the first N harmonics satisfy the predefined convergence
criteria, harmonic balance is reached. Otherwise, an increment of the initial value is calculated using a
generalized Euler method, namely the Newton-Raphson method.
The general procedure of HBM can be summarized as below. Note that step 3 and step 4 can be
interchanged:

• Choose a convergence unknown X (f )

• Give an initial value X 0

• Apply the linear equations in frequency domain

• Apply the nonlinear (and the linear) equations in time domain

• Calculate an incremented initial value X1
0

• Repeat step 3-5 until convergence

2.2 - Other iteration methods
The iteration method, proposed by Mutyala et al [4], is essentially the same as the HBM, except how
the increment of the convergence unknown is calculated. In this method, the final value is used as a new
initial value. That is, no increment in the initial value is calculated, since it is merely replaced by the
final value of the convergence unknown. Compared to the HBM, in this approach it is more likely to
find divergent solutions, because the lack of an increment condition.
In the method of Gupta et al [3], the iterative procedure is similar to the HBM, but all calculations are
carried out in the time domain. Initial and final values of the convergence unknown are also compared in
the time domain. Here, as well as in [4], the new initial time record in the convergence loop is given by
a mere replacement with the final time record of the convergence unknown. By using this convolution
integral, it is possible to study transient solutions as well. The price that has to be paid is increased
calculation time.

2.3 - Convolution methods
In [5] and [6] convolution methods are presented. In both papers, a method where the convolution
integral is used as a boundary condition is proposed.
Davies et al [5] use the method of characteristics in determining the time domain solution. The key
concepts of the method are as follows. First the time domain reflection function R(t) from the frequency
domain impedance function Z (f ) is calculated. This represents the linear part of the system. Then,
a volume flow is determined from R(t) using the method of characteristics; a fast Fourier transform is
applied and finally the pressure P(f ) is calculated in the frequency domain. Note that this is not an
iterative method.
In [6] Gazengel et al propose that the impedance condition

P (f) = Z (f)Q (f)

where P(f ) is the acoustic pressure, Z (f ) the acoustic impedance and Q(f ) the volume flow in the
frequency domain, is rewritten in the time domain as

p (t) = rp (t) ∗ [p (t) + ZCq (t)] + ZCq (t)

Here ZC denotes the characteristic impedance and rp(t) the reflection coefficient in time domain. This
time domain pressure is then used in an appropriate numerical scheme for solving the complete system,
such as an Adams scheme.
In [6] much effort is spent on various correction methods to create a digital/discrete pipe system which
has approximately the same features as the analogue/continuous one.
Here, the equations are arranged in a nonlinear differential equation system, where the convolution
integral is used as a boundary condition. The memory of the system, that is the convolution length, is
set to one period. It is therefore a method that can be directly compared with the HBM. An Adams-
Bashforth algorithm is used as a predictor and an Adams-Moulton algorithm is used as a corrector. The
differential equation system is solved with constant step length.
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Figure 1: In the left-hand side, the piston-restriction system is shown; in the right-hand side, a
schematic sketch of the system is shown with the unknowns.

3 - MODEL USED FOR COMPARISON
For comparison purposes, a simple piston-restriction system was studied as a model problem. The
equations are derived in great detail in [7], so only a brief summary is provided here. The used system
and a simple sketch including the unknowns of the system are depicted in Fig. 1.
As seen in Fig. 1, the system is divided into three separate parts: volume 1, which is the oscillating
volume source, volume 2, the restriction, and volume 3, the pipe system. Volume 1 and 2 are considered
as the source part, and are described by a nonlinear differential equation system in time domain. In
volume 3, which is after the flow has fully developed, linear equations are considered to hold. A standard
impedance/admittance relation gives this linear equation. Supposing conservation of momentum and
volume flow in junctions, that the system is adiabatic and that the restriction acts like a stiff mass plug
gives the following equation system.
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All subscripts denote the parts of the system according to Fig. 1. Note that only the last equation
is given in frequency domain, while the others are given in time domain. Here, P denotes pressure, ρ
density, Q volume flow, S cross sectional area, V the oscillating volume caused by the moving piston
and finally Y the pipe admittance.

4 - COMPARISON OF METHODS
The HBM was found to be a simple tool for parametric studies. In Fig. 2 the pressure in volume 3, see
Fig. 1, is shown for three different diameters of this pipe. The rest of the system parameters are held
constant. The possibility to define the initial value gives short calculation times when a parameter is
changed. A former solution from a similar system can be used as initial value in the calculations, and a
small change in a parameter value yields in some sense a small change in the solution too.
For the used convolution method, it is found that the calculation time is essentially longer then for the
HBM. The method is also more sensitive to changes in parameters, since a constant step length is used.
A change that creates larger oscillations also implies a shorter step length to find a convergent solution.
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Figure 2: The pressure in volume 3 for three different diameters of the pipe.

Every calculation starts at time zero, and a transient solution is present during the first oscillations.
This time domain method thus has to stabilize before the steady-state solutions can be extracted and
the solution has to be calculated for a longer time period. Concerning parametric studies, this is of
course a drawback. Every parameter change implies a recalculation from time zero.

Figure 3: Comparison of the volume flow from the HBM solution (solid) and a solution found by the
convolution method (dashed); note that two periods are plotted.

In comparison with the HBM Fig. 3 shows the volume flow for a certain parameter configuration. There
are many possibilities for the slight difference between the solutions. For example, the step length in the
time domain method has an influence on the results. In both methods some simplifications are done. In
HBM as well as the convolution method, the impedance calculation in frequency domain is truncated to
a finite number of harmonics. A time window is applies in the convolution method.
No convergent solution was found for this model problem using the method that was proposed by Mutyala
et al [4]. They however got solutions on another compressor system using this method, so it should be
possible to get convergent solutions. The reason for this discrepancy still has to be elucidated.
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5 - CONCLUSIONS
The harmonic balance method was found to be a useful tool for prediction of the steady-state periodic
regime. It is fast and it provides a possibility to perform parametric studies with a low computational
cost. The drawback is that only steady-state periodic solutions can be found. Fractional orders of
harmonic frequencies can be very important in nonlinear applications, especially when the driving force
is not a single frequency. Any rational order of the fundamental frequency can though be included by a
simple change of the frequency variable in the Fourier series. Nonlinear phenomenon in the steady-state
periodic regimes are thus efficiently studied via the HBM.
The convolution methods have an important advantage compared to HBM. Since the convolution integral
is calculated, we are not restricted to periodic steady-state regimes in the solutions. But, since each time
record has to be calculated starting from time zero, the preceding solutions can not be used to perform
efficient parametric studies. This method is however the best choice in applications where transient
solutions are of great interest.
The iteration method of Mutyala [4] has not performed any convergent solution for this model problem.
When a solution from the HBM is inserted in this iteration method, it ends up with the same solution.
But already with a small change in some of the system parameters, this method creates a divergent
solution for the model problem.
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