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ABSTRACT
The prediction of sound propagation from acoustic sources through partial enclosures is of great interest in
machinery and vehicle noise control. The use of classical integral equation is possible for low frequencies
but quite unrealistic in mid and high frequencies. To overcome this problem, we propose here the
Intensity Potential Approach, which describes propagation phenomena and ignores local reactive effects.
With this method one can predict the irrotational part of active intensity, propagating in an acoustic
medium with obstacles. The method allows us to calculate the sound pressure radiated outside partial
enclosures, from internal acoustic power sources. Standard Finite Element Heat Transfer software can
be used to solve industrial acoustic problems using this method. An application to trucks engine noise
is under development.

1 - INTRODUCTION
The method presented in this paper is aimed to predict sound propagation from acoustic sources to
the far field through complex partial enclosures. This issue is frequently encountered for transport
and machinery noise prediction. Problems are assumed to be stationary. Classical methods based on
Helmoltz’s equation or integral formulation are quite accurate in low frequencies and for simple geometry,
but they are limited for industrial problems by their computing time and their lack of robustness. To
overcome these difficulties, several energy methods have been developed for both vibration and acoustic
issues, among which is diffusion equation [1-5]. However difficulties arise, due to the diffusion constant
to be used. The present formulation of the diffusion equation differs from the previous ones by the
energy variable used: the introduction of the Intensity Potential instead of acoustic energy releases an
assumption on the sound field. Moreover, the diffusion equation obtained is directly computable on usual
Heat Transfer Finite Element software.

2 - FORMULATION OF DIFFUSION EQUATION

2.1 - State of the art
Energy methods aim to describe sound fields with energy path. The main advantages of these methods
are much lower computing time, smoother solutions, and above all better robustness. Classical diffusion
equations, dedicated to either structure vibrations or acoustics, deal with total energy E, which is the
sum of potential and kinetic energies. Constitutive equations are the local power balance (eq. 1), written
here at a point M apart from sources (sources can be taken into account in boundary conditions), and
an assumption on the sound field (eq. 2).

div
(
~I (M)

)
= −ηωE (1)

~I = −Dgr~adE (2)
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where ~I is the active sound intensity, h the damping loss factor, and ω the angular frequency. Equation
(1) is valid for any type of wave. But (2) has only been demonstrated for certain types of waves. For
damped free waves, D is related to group velocity [2-4], and for diffuse fields it can be linked with the
mean free path between obstacles [5]. Equation (2) is analogue to Fourier’s law encountered in Heat
Transfer problems. It states that energy flows from zones of high energy density to zones of lower density.
Combining (1) and (2) leads to the diffusion equation:

∆E − ηω

D
E = 0 (3)

2.2 - Intensity potential
According to Helmoltz’s theorem, any vector field can be expressed as the sum of the gradient of a scalar
potential ϕ and the curl of a vector potential ~C. Thus the active intensity can be written

~I = ~Iϕ + ~IC (4)

where

~Iϕ = −gr~ad (ϕ) (5)

is called irrotational intensity and

~IC = r~ot
(

~C
)

(6)

is called rotational intensity.
The intensity potential ϕ is defined up to a constant. If no acoustic source is assumed in the far field,
this constant can be fixed to zero at infinity.
For the majority of industrial acoustic problems, atmospheric dissipation can be neglected in comparison
with dissipation due to absorbing material. Hence the local power balance (1) is reduced to

div
(
~I (M)

)
= 0 (7)

Eqs. (4) and (7) lead to

div
(
~Iϕ (M)

)
+ div

(
~IC (M)

)
= 0

Taking into account div (gr~ad (ϕ)) = ∆ϕ and div
(
r~ot

(
~C
))

= 0, one gets Laplace equation for the
intensity potential:

∆ϕ (M) = 0 (8)

Unlike equation (3), equation (8) is strictly equivalent to thermal diffusion equation. Indeed, in usual
heat transfer problems, dissipation only arises on the boundaries. Therefore there is no dissipation term
in thermal diffusion equation. This latter point is important from a practical point of view, since (8) can
be solved directly by usual finite elements thermal software. On the other hand, it should be noticed that
no assumption has been made so far on the structure of the acoustical field. Therefore, computation of
equation (8), together with adapted boundary conditions, leads to the exact solution in terms of intensity
potential ϕ and irrotational intensity ~Iϕ.

2.3 - Rotational intensity
The method proposed here ignores the rotational part of active intensity. Even though equation (8) is
not an approximation but the exact equation governing ϕ and ~Iϕ one can wonder whether ~IC can be
neglected for expressing the boundary conditions, and for assessing pressure values.
Let us first write the power balance for a closed surface sf surrounding a source:

πs =
∮

sf

~I.~nds (9)

where πs is the source power.
Using Stockes theorem and equation (4) one gets:
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∮

sf

~I.~nds =
∫

V

div
(
~Iϕ

)
.dV +

∫

V

div
(
~IC

)
.dV (10)

As a curl, ~IC has a zero-divergence. Thus, the second term of eq. (10) is zero. This means that the
power related to the rotational part of active intensity is zero, even for a volume containing a source. On
the contrary, the power related to the irrotational intensity is fully representative of the power injected
by the source:

div (gr~ad (ϕ)) = ∆ϕ ⇒ πs =
∮

sf

~Iϕ.~nds = −
∫

V

∆ϕdV (11)

Therefore it seems quite reasonable to describe sources power by the only irrotational part of active
intensity on a surface si, as done in table 1.
In reference [6-7], acoustic fields structures are studied by decomposing active intensity ~I into ~IC and
~Iϕ. It is shown that rotational intensity only changes local energy paths, and that global energy transfer
between two points of space can be described by the only potential ϕ. As ~IC is a curl, its flux lines
(tangent to ~IC at each point) are necessarily closed on themselves. Thus the corresponding energy is
trapped in these flux lines, and is not transmitted to the far field. Actually, rotational intensity appears
when two or more waves interfere, and vanishes in the free field. Computing ~Iϕ is therefore self-sufficient
to evaluate the acoustic energy transmitted to the far field. Moreover the solution will be more robust,
since it is not affected by local interference and varies smoothly in space.

2.4 - Link between intensity and pressure
Unlike the irrotational intensity, the pressure level is much affected by interference. Pressure variations
are linked to rotational part of active intensity and also to reactive intensity. Therefore calculating ~Iϕ

will generally not be sufficient to fully determine the sound field. However it will describe the energy
transfer from one part to another.
We might also get the sound pressure level in the far free field, using the common relation:

P = ρ0c
∣∣∣~I

∣∣∣ = ρ0c
∣∣∣~Iϕ

∣∣∣ (12)

as ~I~C = ~0 in the free field.
This relation is equivalent to Lp=LI , taking adequate reference levels, such as I 0=10−12W/m2 and P0=2
10−5Pa.

3 - APPLICATION TO PARTIAL ENCLOSURES

3.1 - Physical problem
Consider an acoustic source Si radiating in a non-dissipating medium (air) delimited by complex bound-
aries. As shown in §2.2, the intensity potential ϕ is governed by Laplace equation (8) in the whole volume
considered. Solving this second order equation requires one to define boundary conditions in terms of ϕ
and ∂ϕ/∂n. They derive from the value of the normal component of active intensity on the boundary
surfaces, with the approximation:

In ≈ Iϕn = −∂ϕ

∂n
(13)

where ~n is the unit vector normal to boundaries, pointing outward (from the air to the obstacle).

Figure 1: Physical problem.
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Physical phenomenon Normal component of active
intensity, pointing to the

boundary

Boundary condition

Power πs distributed on
surface s

In = −πS

s
(14) ∂ϕ

∂n
=

πS

s
(15)

Absorption

In = α {In}free−field (16) ∂ϕ

∂n
= α

{
∂ϕ

∂n

}

free−field

(17)

Far free field radiation (written
on a R-radius hemisphere)

In (R) =
1
R

ϕ (R) (18) ∂ϕ

∂n
= − 1

R
ϕ (R) (19)

Table 1: Boundary conditions.

The source is modeled by its intensity Iϕ=W/m (LI=150 dB ref. 10−12 W/m2), applied on a hemisphere
(radius 1cm). Several configurations have been tested for the obstacle. Here is presented the result for a
perfectly reflecting obstacle ( α=0), with a 30◦ aperture around y-axis. The boundary condition is In=0.
For absorbing obstacle, the calculation would require two steps: determination of the incidence intensity
with a free field calculation (without obstacle), then final calculation with the boundary condition (16).
A far free field radiation condition has been introduced in order to limit the calculation to an R-radius
hemisphere. It derives from two assumptions: at a distance R much longer than obstacles dimensions,
the acoustic field behaves locally as spherical waves propagated in the free field (no wave back), and ϕ=0
at infinity ( ϕ is an energy). Under these assumptions, one can explicit ~Iϕ and ϕ:

Ir (R) =
1
2
Re (P ∗U) =

ρ0ck
2

32π2
|Q|2 1

R2
(20)

where ρ0 is air density, c the speed of sound, k = ω/c the wave number, and Q the voluminal rate of
flow of the equivalent spherical source.

~Iϕ = −gr~ad (ϕ) ⇒ ϕ (R) =
ρ0ck

2

32π2
|Q|2 1

R
(21)

One eventually gets eq. (18).

3.2 - Results
Figure 3 shows curves of constant irrotational intensity, drawn every 3dB. They were obtained with Ideas
Finite Element Heat Transfer solver.
One can notice that unlike Helmoltz’s equation, Laplace equation (8) remains the same whatever the
frequency. The intensity potential approach only cares about frequency dependency of absorption coeffi-
cients and of power sources. That’s why the method tends to overestimate diffraction at the aperture for
high frequencies. One would then expect more directivity along the y-axis. This is due to the omission of
the rotational part of the active intensity. Actually, exact boundary condition on the reflecting obstacle
would be In = Iϕn + I~Cn

= 0 rather than Iϕ = 0. Neglecting ~I~C in a region where it might be high seems
to have much effect on diffraction.

3.3 - Far field condition
A test has been performed in order to evaluate the minimum distance R where the far free field condition
should be applied. For the first calculation we took R=1m, which is 5 times longer than the obstacles
radius. Then we changed R to 10 meters, i.e. 50 times the obstacles radius. The amplitude of intensity
on the x -axis behind the obstacle (in the shadow zone) is drawn on figures 4 and 5. These curves show a
very little variation (0,7dB at r=1m) whereas R has been multiplied by 10. This indicates that R=1m
is already a good position for the far free field condition.
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Figure 2: Finite Element Mesh.

4 - CONCLUSION
A diffusion equation has been established for acoustical cases. It is happening to be Laplace equation
for the scalar intensity potential ϕ. Solving this equation together with energy boundary conditions
leads to the irrotational component of the active intensity. The computation can be done for complex
geometry, using a Finite Element Heat Transfer solver. One can then determine the pressure level away
from acoustic sources and obstacles, since it is related to the intensity level in the free field. Both
experimental validation and comparison with FE and Ray Tracing methods are under development.
Industrial application to trucks engine noise is also planned.
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Figure 3: Curves of constant Iϕ.
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Figure 4: Intensity behind obstacles for a far free field condition at R=1m.

Figure 5: Intensity behind obstacles for a far free field condition at R=10m.


