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ABSTRACT
The sound radiation of a clamped annular plate has been analyzed in this paper. The plate is clamped
to a planar, rigid baffle and is excited to vibrations under external pressure. The processes of steady
state vibrations, also harmonic with respect to time, have been investigated. The analysis is basis on the
complex mutual sound power of free vibrations of a plate discussed elsewhere. Such factors as forcing,
internal damping of plate material and interactions of the air column above the plate have been coupled
into the equation of the plate’s motion. As a result an inhomogeneous equation of the plate’s motion
in the form of algebraic equation system has been obtained. Its solution provides the normalized, total
sound power. Some frequency characteristics have been obtained for the sound power related to the
power of a model plate as well as for the mutual power of different vibration modes.

1 - INTRODUCTION
The sound radiation of a thin annular plate is analyzed in this paper. The full theoretical analysis
of sound radiation by a circular plate was taken in [6]. The vibration analysis is presented in several
publications for circular as well as annular plates (cf. [3], [5], [8]). A number of papers treat of the total
sound power determination and its experimental verifications (cf. [1,2]).

2 - THE EQUATION SYSTEM AND ITS SOLUTION
The plate of radii r2 > r > r1 is clamped into a planar rigid baffle and is excited to vibrations with the
external axisymmetric pressure Re {f (r) exp (−iωt)}. The internal friction force of the plate and the
damping force from the air column above the plate have been taken into account. We assume that the
transverse deflections of the plate are as small as the plate’s vibrations are linear. That is why we use
the rheologic Kelvin-Voigt’s model of a viscously elastic plate, which gives the plate’s equation of motion

B′∇4η (r, t) + ρh
∂2η (r, t)

∂t2
= f (r, t)−R′

∂

∂t

{∇4η (r, t)
}− p (r, t) (1)

where η (r) =
+∞∑
n=0

cnξn (r) , cn ∈ C is a transverse deflection of the plate and

ξn (r) =

√
1
2

s2 − 1
C ′20 (sxn)− C ′20 (xn)

ηn (r)
An

=

√
1
2
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C ′20 (sxn)− C ′20 (xn)
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k4
n = ω2

nρh/B′

p (r, t) = ρ0
∂φ (r, t)

∂t
is the sound pressure and the following plate’s parameters are xn − eigenvalue of

the frequency equation, ωn − n-th eigenfrequency, s =
r2

r1
, B′ =

Eh3

12 (1− ν2)
− bending stiffness, R’ −

lossiness, h − thickness, ν −Poisson’s ratio, ρ − density. Vibrating plate radiates acoustic waves into
the hemisphere z ≥ 0. Several transformations of equation (1) lead to its form of equation system

c̄m

(
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m

k4
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− 1
)
− iε0

+∞∑
n=0

c̄nPnm = f̄m, c̄m = cm
ρhω2

fma x
,
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ρhω2

fmax
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xn

r1

)2
√

B′

ρh

(2)

where k4
B = ω2ρh/B, B = B′ (1− iε′), ε′ = ωR′/B′,
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ρhω2 (s2 − 1) r2
1

∫ b
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f (r) =
{

fmax if r1 < a < r < b < r2

0 if r1 < r < a and b < r < r2

Pnm is the mutual sound power in the form of the Hankel’s representation taken from the modal analysis
(cf. [4], [7]). The complex factors cn have been computed by the solution of the equation system (2).
The total sound power is

Π = πρ0cω
2r2

1

s2 − 1
2

+∞∑
n=0

+∞∑
m=0

cnc∗mPnm, Π′ = πr2
1ρ0c

(
fmax

ρhω0

)2

(3)

Normalizing the sound power (3) we get

P ′ (ω̄) =
Π
Π′

=
s2 − 1
2ω̄2

+∞∑
n=0

+∞∑
m=0

c̄nc̄∗mPnm (ω̄) (4)

The total power P has been related to the total power P ’ of a model plate. This makes possible producing
some frequency characteristics independent of the plate’s material parameters.

3 - CONCLUSIONS AND RESULTS DISCUSSION
The frequency characteristics present the sound power as a function of the frequency of the exciting force
factor ω, related to the plate’s fundamental resonant frequency ω0, i.e. ω̄ = ω/ω0. Some plate material

parameters have been introduced ε̄0 =
ρ0c

ρhω0
, ε̄′ =

ω0R
′

B′ , where c is the sound propagation velocity in

air, and ε0 = ε̄0/ω̄, ε′ = ε̄′ω̄.
All the figures show that the sound power reaches the local maximums for the forcing frequencies equal
to the plate’s successive eigenfrequencies − the greatest one for the fundamental eigenfrequency. If the
plate’s shape is close to an annulus, i.e. s → 1, some regular oscillations appear in the frequency domain
for the sound power modulus. Also successive eigenfrequencies appear for higher frequencies. If the
plate’s shape is close to a circle, i.e. s → ∞, the oscillations disappear, the eigenfrequencies appear
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Figure 1: The normalized total sound power modulus of an annular plate |P ′|, where s=1.2, h=1e-3m.

Figure 2: The normalized total sound power modulus of an annular plate |P ′|, where s=1.2, ε̄′=1e-6,
the plate’s thickness h is the curve parameter.

for lower frequencies, and the sound radiation became analogous to the radiation of a circular plate of
identical size.
The parameter ε̄0 describes the medium density related to the plate material density. The greater is its
value the stronger the plate’s vibrations are damped by the medium and the greater are the reciprocal
interactions of the plate’s successive vibration modes. The parameter ε̄′ describes the plate’s internal

friction related to the plate’s bending stiffness (cf. Fig. 1) and the parameter h̄ ≡ h√
S0

=
h

r1

√
π (s2 − 1)

is the plate’s thickness related to the plate’s area S0 (cf. Fig. 2). The smaller is ε̄′ value and the greater
is h̄ value the greater values of the sound power modulus are reached for the successive eigenfrequencies.
Some sample values of the mutual power separated from the total power (4) are shown on Fig. 3. It is
visible that values of the sound power of identical indexes have the greatest fraction in the total power.
The fraction of values of the mutual power is much smaller.
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Figure 3: The mutual sound power modulus |P ′nm|, where s=2, h=1e-3m, nm=00, 01, 02, 03.
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