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ABSTRACT
In analyzing structure-borne noise problems, it is often desired to characterize vibrational sources in
conjunction with a given receiving structure. Since the dynamical behavior of the latter is most often
described by transfer models relating to excitation forces, sources may be characterized by the forces they
excert on the receiving structure under operating conditions. Over the last two decades or so, various
techniques to experimentally determine these forces have been proposed. They all have in common
that the forces are inferred from the resulting vibration responses on and the transfer characteristics of,
the receiving structure. They mostly differ in the way how the transfer characteristics of the receiving
structure is obtained: by nonparametric or various parametric models, both of which can be based on
measured or synthetic data. Regardless of the transfer model employed, all these techniques suffer from
a high sensitivity to uncertainties in the data (measured or calculated), which means that it may become
very hard to reliably predict the forces one is interested in. This is true even when no formal inversion of
the transfer model is required. Therefore, techniques to quantify errors and to ”regularize” the problem
have evolved. In the present paper, the advantages and drawbacks of the various methods are discussed.
Special attention is paid to issues that are felt to be rather under-represented in discussions found in
the literature body, such as the choice of deterministic or stochastic force models. On the basis of this
comparison, it is attempted to sketch the directions of possible further research.

1 - INTRODUCTION
In analyzing structure-borne noise problems, it is sometimes desired to characterize vibration sources in
conjunction with a given receiving structure. Since the dynamical behavior of the latter is most often
described by transfer models relating to excitation forces, sources may be characterized by the forces
they exert on the receiving structure under operating conditions.
Over the last two decades or so, various techniques to experimentally determine these forces have been
proposed. They all have in common that the forces are inferred from the resulting vibration responses
on and the transfer characteristics of, the receiving structure. Since it is easier to consider point forces
only (which may either actually be justified or represent the sampling of a distributed load), one has a
classical multiple-input/multiple output (MIMO) problem, where the L inputs (excitation forces) and
the M outputs (vibration responses) are related via

Syy (ωs) = HH
fy (ωs) · Sff (ωs) · Hfy (ωs)

(M ×M) (M × L) (L× L) (L×M)
(1)

assuming linearity and time invariance. In this equation, Syy (ωs) is the M × M vibration response
spectral density matrix (SDM), Sff (ωs) the L × L excitation force SDM and Hfy (ωs) the L × M
transfer function matrix and ωs the specific frequency one is interested in. The spectral density matrices
are, for each frequency of interest, square Hermitian matrices with auto spectral densities on the diagonals
and cross spectral densities elsewhere. The superscript H symbolizes the Hermitian matrix operation
(i.e. the complex conjugate transpose). The representation of spectra as power densities (i.e. Fourier
transforms of correlation functions) acknowledges the fact that real-world processes can usually not be
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modeled by deterministic approaches. (This is sometimes ignored, but it actually is important as it bears
consequences for measurement techniques and error handling).
It can be seen from eq. 1 that, if the vibration responses and the transfer characteristics of the receiving
structure are known, one can infer the forces, provided M ≥ L. To this end, one has to get estimates of
vibration response and transfer characteristics and to find a way to effectively solve eq. 1 for the force
spectra.
Whereas all methods known to the author require the in-situ measurement of the vibration responses (by
various means: accelerometers, laser vibrometers, strain gages), they differ in the way how the transfer
characteristics of the receiving structure is obtained and by which techniques the solution of eq. 1 is
attempted to be made robust.

2 - OVERVIEW OF METHODS
The feature that above all distinguishes the various methods from each other is the way the transfer
properties of the receiving structure are obtained. The techniques for solving eq. 1, on the other hand,
can roughly be characterized by two refinement steps: first, a solution based solely on the transfer model
(either by inverting it formally or by an appropriate formulation that already incorporates the mapping
from responses to forces), and second, so-called regularization measures which in general use information
of both the transfer model and the operating responses to find an optimal solution. The latter issue will
be part of the discussion in section 3.4, whereas the following (certainly not exhaustive) overview will be
given on the basis of the different transfer models employed.

2.1 - Measured transfer characteristics
Due to the complexity of real-world structures, most inverse force synthesis methods rely on transfer
models based on measured data.
FFT-based transfer models. In the majority of the published work on inverse force synthesis FFT-
based transfer functions are used. This means that for each of the FFT frequency points a transfer
function matrix is calculated from measured input-output data. This transfer function matrix is then
subjected to a pseudoinverse operation to yield a mapping from measured vibration responses to the
desired forces. Within this framework, one still has a variety of options: Hammer versus shaker ex-
citation, deterministic versus random test signals, direct versus reciprocal measurements, single versus
multiple output measurements, various transfer function estimates, the number and location of the vi-
bration response sensors. Investigations on resulting errors have shown that the following guidelines
should be followed: 1.) use shaker excitation, 2.) measure directly, 3.) measure all vibration responses
simultaneously and do not change the setup between the transfer function and the operating response
measurements, and 4.) use the H 1-estimate. See [1] for details.
In summary, the FFT-based measurement methods are appealing because they potentially yield the
most accurate results (at the expense of the highest cost). It has been shown that by optimizing the
relevant parameters (especially sensor noise, sensor location) one can get almost as accurate results as if
direct measurements were possible, at least for certain frequency regions [2]. Critical factors are transfer
function nonlinearities, changes in the transfer behavior between the transfer function measurement and
that of the vibration responses (e.g. stiffening by reassembling a multi-point connected source-receiver
system). Finally, one can of course not get better than in direct measurements, i.e. the known difficulties
measuring lateral forces or moments will continue to be with us, but they will not yield substantially
more trouble than in direct measurements.
ARMA and modal transfer models. Once the raw input-output data is available one can proceed
further and construct a parametric transfer model such as a modal model [3] or an ARMA model [4],
which can then in turn be inverted. The hope behind this is that the known sensitivity to small errors,
which is higher at certain frequencies and lower at others, could perhaps be globally lowered by modeling
larger frequency regions instead of single frequency points. However, it turned out that this is not the
case: the performance regarding error sensitivity does not improve and one will get additional errors by
deviations between the actual transfer behavior and the model [5], [4]. The use of these transfer models
is therefore not recommended.

2.2 - Calculated transfer characteristics
As experiments are expensive and cumbersome, there is a general trend towards computational methods.
To date, these models are limited to simple structures, but this may change in the future.
Finite difference approximation of equations of vibration. One attempt consists of applying a
spatial finite difference scheme to solve an appropriate description (by linear differential equations) of
the forced vibration of the structure in question (e.g. the inhomogeneous wave equation of a bending
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beam, [6]). This approximation yields the force at a given point as a function of the displacements at a
number of nearby points. Thus, the resulting formulation already provides an inverted transfer model.
The advantage of this method is that only local (nearby) vibration information is necessary to reconstruct
the loading at any given point on the sampling grid. This constitutes an important data reduction
and makes a sequential identification of force spectral densities possible, thus reducing the number of
simultaneous data acquisition channels. However, this data reduction (which in effect is a first order
approximation) will also be a source of errors (in addition to the errors introduced by deviations of the
true transfer behavior from the model).
Wavenumber domain solution of equations of vibration. Instead of applying a spatial finite
difference scheme one can also use a spatial Fourier transform to solve the equations of forced vibration
of the respective structure in the wavenumber domain. Again, a formal description of the forced vibration
by linear differential equations is required. An application example is found in [7,8], where Mindlin’s
plate equations were used to derive a wavenumber domain expression of the forces on the sampling grid,
as a function of the normal displacements at all grid points.
This method does not introduce additional errors by finite difference approximations, but requires dis-
placement information at all points to be taken into account.
Finite element transfer models. A common problem of the above presented methods is that they
require an explicit formulation of the forced vibration by linear differential equations. This is feasible for
simple structures such as beams and plates, but will become hard or impossible for more complicated
structures. Therefore, finite element transfer models may become a good choice in the near future.
In summary, by using calculated transfer characteristics one gets rid of potentially difficult measurements
but will have to cope with additional errors introduced by real-world deviations from idealized models.
The use of FE models could be promising in the near future, in particular if one can get them to handle
lateral and rotational force components adequately.

3 - ERROR HANDLING
Virtually everyone who has ever set out to inversely measure excitation forces was sooner or later con-
fronted with the problem of the notoriously high sensitivity of the synthesized forces to small errors in the
data. Therefore, it is important to understand how these errors are generated and by which mechanisms
they can be minimized.

3.1 - Number of simultaneous response measurement channels
An important requirement concerns the number of simultaneous measurement channels. Although it is
in principle possible to obtain all necessary information from 2-channel measurements, it has been shown
that this may yield high errors [1]. These errors are due to the statistical nature of the responses: In
each consecutive measurement another realization of the process in question is observed.
Therefore, the most reliable approach consists of measuring all responses simultaneously. This has the
advantage that all sensors can be left in place (i.e. will be part of the receiving structure), which offers
a number of benefits, in particular if the transfer characteristics are measured: the whole response
measurement setup would be used for both transfer and operating response measurements, i.e. no
calibration, no errors by detaching/reattaching of sensors or sensor mass effects. Also, a random test
signal could be used in the transfer measurement which could be designed to be similar to the expected
force signal, in which case the effects of transfer nonlinearities would be minimized. The drawback is
a high measurement expenditure, even if sensor locations can be chosen such that no or only a weak
overdetermination is required.
If one wants a less expensive solution, one could resort to multiple reference methods (e.g. [9]), which
have their roots in holography techniques. The idea is to decompose the matrix of response spectral
densities in

Syy (ωs) = SH
ry (ωs) · S−1

rr (ωs) · Sry (ωs) (2)

where the subscript r denotes the reference signals (which may be chosen from the responses). The
number of references must be equal to or greater than the number of incoherent sources, which should
first be identified (e.g. by singular value decomposition techniques). Then, one only has to measure the
references simultaneously, whereas the cross spectra between references and responses ( Sry (ωs)) can
be determined sequentially. The drawback of this technique consists of additional errors introduced by
sensor detaching/reattaching and related issues, by the now necessary calibration and by the possible
cumulation of noise effects.
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3.2 - Estimating error bounds
As errors may easily become so important that no meaningful result whatsoever is obtained even with
accurately (according to ”normal” standards) measured data, it is important to have an idea on how
large they are for a given measurement. To date, error prediction models exist for methods based on
measured transfer functions only [2], [10]. They cover the following error types (assuming standard
measurement techniques): 1.) measurement noise induced bias on response spectra, 2.) random errors
on response spectra, 3.) random errors on transfer functions, 4.) leakage. The influence of these errors on
the synthesized force spectra can be predicted on the basis of known or measured information. However,
in their present form, these models predict rather conservative error bounds.
Tighter bounds can be obtained by using estimates of measurement noise induced errors and random
transfer function errors together with Monte-Carlo or tolerance matrix methods. First experiments
have shown that these methods can yield very accurate problem-specific error bounds, but require more
information and are computationally more expensive than the original ones. Also, they cannot be
transformed to a similar problem such as another excitation situation (which can easily occur e.g. if
the vibration source is replaced by another one). Still, precise error predictions will be needed, e.g. for
choosing optimal regularization parameters (see discussion in section 3.4), which is why these methods
could be a worthy subject of future work.

3.3 - Selecting response measurement points
A critical decision in inverse force synthesis is the choice of the points at which the operating response
shall be measured. Usually, it is desired to make this decision before the operating response measurement.
Therefore, one needs selection criteria which do not depend on the actual excitation situation. In [11],
the quantity

∆ (ω) ·
√

M/ω · ‖Hfy (ω)‖2F → min (3)

was proposed to serve this purpose. In eq. 3, ‖·‖F is the Frobenius norm, and ∆ (ω) is a frequency
dependent factor characterizing the amplification (in the F-norm sense) of noise induced bias on response
spectra to errors on synthesized force spectra. ∆ (ω) may either be estimated by the square of the transfer
function matrix condition number (quick but coarse) or from Monte-Carlo simulations with the given
transfer function matrix (accurate but expensive).

3.4 - Regularization
Because of the high sensitivity of inverse methods to small errors in measured data, so-called regular-
ization methods have been developed. The idea is to slightly change the transfer model such that the
solution to eq. 1 is less dependent on small changes in the measured responses. In other words, one adds
a small error (to the transfer model) and hopes that this is compensated for by a larger reduction in the
sensitivity to the other errors. Obviously, this is a risky business because it works only if the ”right”
changes are applied to the transfer model: otherwise, errors may drastically increase. Of course, there
are procedures to get optimal regularization, but at least the common ones cannot be applied to inverse
force synthesis in a straightforward manner. This shall be illustrated in the following.
Singular value truncation / low-pass spatial filtering. One common method consists of performing
a singular value decomposition of the transfer function matrix, and to base the transfer model inversion
on the largest singular values only. By doing so, one decreases the rank of the transfer function matrix
and thus the number of incoherent forces that could be identified. An identical effect is achieved by
applying a low-pass filter to inversely synthesized forces on a spatial grid [12]. The problem now is to
determine a threshold for the singular value discarding or a cut-off wavenumber for the spatial low-pass
filter, respectively. If the threshold is too low (or the cut-off wavenumber too high), then no regularization
effect is observed, if it is too high (or the filter cutoff wavenumber too low), then the resulting errors
may be even higher than without regularization [13]. To date, there is no robust guideline to choose this
parameter. Therefore, this technique should be applied with caution.
Tikhonov regularization. The second popular approach is the so-called Tikhonov regularization,
which is also based on the singular value decomposition of the transfer function matrix. Here, instead
of ignoring the smallest singular values, all singular values are modified according to

σR (ωs) = σ (ωs) + β (ωs) /σ (ωs) (4)

where σR (ωs) is the regularized singular value, σ (ωs) the original one and β (ωs) the regularization
parameter. It is seen from eq. 4 that the relative change of the singular values is larger for small singular
values and for high β’s. The big question now is how to choose β (ωs) in practical measurements.
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The approach that is usually proposed (e.g. in inverse air-borne noise problems, [14]) is the so-called
cross validation technique of which several variants exist. These cross validation techniques compute
cost functions which become minimal for a given value of β (ωs). The problem is that the validation
consists of some sort of comparing observed responses to those predicted if the chosen transfer model is
fed with different synthesized forces. This works well for problems where the difference between the two
is actually caused by the sort of error the inversion is sensitive to (this will in most cases be errors related
to responses, either in the response measurement or the transfer model [1], [10]). As soon as the transfer
model not only consists of simple delays (such as in free-field conditions), but of resonant systems, the
cross validation will sense errors that have an excitation-related structure (because they depend on the
actual realization of the excitation forces) whereas the important error types such as measurement noise
on the responses are masked. In other words: one tries to modify a problem according to criteria on
which the problem does not depend. Therefore, this approach is less than optimal for inverse force
synthesis.
However, the principle of Tikhonov regularization is certainly worth being considered. Future work
is required to develop methods for choosing β (ωs). This will necessarily involve the consideration of
different error types. One way could be to use the above mentioned Monte-Carlo / tolerance matrix
methods (section 3.2) to obtain precise error estimates on which the choice of an optimal regularization
parameter could be based.

4 - CONCLUSION
It is sometimes desirable to characterize vibration sources in conjunction with a receiving structure, in
which case the forces acting at the interfaces between source and receiving structure are of interest.
These forces can be determined experimentally, by inverting a transfer model (which is required to be
linear and time invariant) between force inputs and vibration responses on the receiving structure.
To date, these transfer models are established either by measurement or by calculation (linear differential
equations, for simple structures only). Future work should extend calculations to more complicated
structures, e.g. by using finite element methods.
A major concern is the high sensitivity of the synthesized forces to small errors in measured data. For the
case of measured transfer functions, (conservative) error bound prediction formulae are available. Future
work should build onto these models, in particular towards three goals: First, they should be extended to
incorporate calculated transfer models. Second, they should be extended to less restrictive requirements
(e.g. to multiple reference methods instead of the simultaneous measurement of all responses) and third,
towards more accuracy for the most important error types. The latter could be achieved by problem-
dependent predictions via Monte-Carlo or tolerance matrix methods.
A way to minimize the sensitivity of the synthesized forces to small errors in measured data is to
apply regularization techniques. Candidate techniques include singular value truncation and Tikhonov
regularization. If optimal regularization parameters were available, these methods could decrease the
otherwise high force errors. To date, reliable methods to choose optimal regularization parameters in
inverse force problems do not yet exist. Future work should therefore focus on this issue. A perhaps
promising way could be to use high-accuracy error predictions (which will probably be available in the
very near future) as criteria for choosing the Tikhonov regularization parameter β (ωs).
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13. M. Lewit, Inverse Messung von Kräften und Leistungen in gekoppelten, schwingenden Strukturen,
TU Berlin, 1994

14. P.A. Nelson, Some inverse problems in acoustics, In ICSV 6, pp. 7-32, 1999


