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ABSTRACT
This paper is concerned with the application of Statistical Energy Analysis (SEA) to subsystems that
have low local mode counts in prescribed frequency bands. This feature is common to many structural
subsystems at low frequencies, e.g. third octave band analysis of vibration transmission between con-
crete/masonry plates in buildings. For this reason, both deterministic and statistical approaches can be
considered in the prediction of sound transmission between concrete/masonry plates. The approach con-
sidered in this paper is to use the framework of SEA and incorporate coupling parameters and statistical
confidence limits determined from Finite Element Methods (FEM) and Experimental SEA (ESEA) for
an ensemble of ’similar’ low modal density structures.

1 - INTRODUCTION
Computational [1,2] and physical [3] experiments on beams and plates indicate that the Coupling Loss
Factor (CLF) will approximate values that are predicted from wave theory transmission coefficients when
the larger of the modal overlap factors for two coupled elements is greater than or equal to unity (M ≥1).
Fahy and Mohammed [1] apply an extra condition for plates that there should be at least five modes in
the frequency band (N ≥5). When these conditions are not met, predictive SEA can still be used but it
must be accepted that errors of unknown magnitude can occur.
In this paper, experimental SEA and FEM are used to determine CLF values between coupled plates
with low modal densities and low modal overlap. This approach requires the introduction of the ’ESEA
ensemble’ as a method of dealing with low modal density subsystems. This gives the opportunity to assess
the statistics of the CLF and use the framework of SEA to determine the ’expected range of response’
using the 95% confidence interval for the CLF values. Although this paper is only concerned with the
output from numerical experiments, the FEM models have previously been validated with measured data
from masonry walls that had low modal densities and low modal overlap factors [4].

2 - USING FEM, ESEA, THE ESEA ENSEMBLE AND SEA
With numerical experiments using ESEA, there is the potential to create an ESEA ensemble. Like the
SEA ensemble, the ESEA ensemble considers systems that consist of subsystems with ’similar’ properties.
However, unlike the SEA ensemble, it can include subsystems where the SEA assumption of equipartition
of modal energy in a frequency band (i.e. incident energy uniformly distributed over a range of angles)
does not apply but ESEA ’weak’ coupling still exists. The SEA ensemble considers uncertainty in the
description of the modal features. In contrast, the ESEA ensemble is intended for subsystems where
there is limited knowledge about the modal features but uncertainty as to how the eigenfrequencies will
be distributed amongst the frequency bands of interest. The ESEA ensemble can therefore be used for
’similar’ sets of structures that have high tolerances on the dimensions and/or material properties. For
these structures, a single deterministic analysis is likely to be of limited use.
The following example is used to illustrate a potential application of the ESEA ensemble to buildings.
Similar examples could be found for ship, automobile and aerospace engineering. This example concerns
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the prediction of vibration transmission in third octave bands between adjacent dwellings for a set of
’similar’ dwellings. The required output of the study is to find the vibration of the plates in terms of the
mean response as well as the expected range of the response. It is the latter output that is expected to
be of most interest to the engineer. The walls and floors are composed of rectangular concrete/masonry
plates and therefore the subsystem modal density is low and equipartition of modal energy for each
subsystem in a chosen frequency band does not occur. However, for the set of ’similar’ dwellings there
will be variations due to workmanship, material properties and plate dimensions such that any certainty
regarding the modes is counteracted by the uncertainty in the prediction of the eigenfrequencies and
eigenfunctions at low frequencies. The requirement for third octave bands exacerbates the problem
because ’similar’ plates in a set of ’similar’ dwellings could have zero, one or more eigenfrequencies in
the same third octave band.
One approach to this study would be to use predictive SEA with CLF values determined from angular
average wave theory [5]. However, errors could occur from incorrect CLF values due to low modal density,
low modal overlap [1] and rectangular plates [6]. Also, the output would only be the mean response. This
is due to the lack of formal procedures in SEA to determine the expected range of the response for these
subsystems. Due to the relatively large plate sizes, variations in material properties and dimensions of
the plates in the set of ’similar’ dwellings are likely to have negligible effect on the plate energy or the
wave theory CLF values in the SEA model. For this reason and the strong modal dependence that can
be expected, simple variations to the subsystem properties in the SEA model with wave theory CLF
values can not be used to create a realistic range for the response.
FEM ESEA is used here to determine CLF values that could be used in predictive SEA. The ESEA
ensemble represents coupled plate junctions in the set of ’similar’ dwellings by taking account of the
variation in material properties and/or dimensions. To use this approach, SEA must be appropriate
for the system under study. This can be indicated during the FEM ESEA analysis by the ability to
determine positive CLF and ILF values and also by well-conditioned energy matrices. The advantage of
this approach using numerical experiments is that both the mean and variance of the ensemble average
CLF can be found without including the effect of sampling errors in the plate energy. These can be
significant with physical experiments. Therefore, the mean response for the ESEA ensemble can be
obtained and there is an opportunity to calculate the expected range of the response. The latter can
be found by ascribing statistical confidence limits to the CLF values such that each CLF can take two
values corresponding to the lower and upper confidence limits. These can be used in a series of SEA
models including all possible permutations of the confidence limits for all the CLF values. The number
of permutations for the SEA model is equal to 2n where n is the number of CLF values that have lower
and upper confidence limits. Although the number of permutations soon increases with many coupled
subsystems, matrix solutions are sufficiently fast that this approach will be feasible for small numbers of
subsystems. It may also be useful with SEA models where the majority of CLF values are single values
determined from wave theory and only a small number of CLF values have confidence limits. The final
step is to define the expected range of the response by the minimum and maximum subsystem energy
ratios.
In this paper, the uncertainty in the ensemble input data is restricted to the plate length that is per-
pendicular to the junction. Uncertainty is introduced into the ESEA ensemble using the Monte Carlo
technique to generate an ensemble of ’similar’ test constructions. The Monte Carlo technique considered
for this purpose is based upon random number generation and statistical distributions to simulate a
system described by the ESEA ensemble average. Assuming that the variation of the plate dimensions
can be described by the normal distribution, these input variables are drawn as random numbers from
normal distributions, N (µ, σ) with mean µ and standard deviation σ.

3 - NUMERICAL EXPERIMENTS
The test construction used in the numerical experiments is a typical T-junction of concrete/masonry
plates that occurs in buildings. Plate 1 represents the separating wall (x 1=4.0m, y1=2.4m, z 1=0.215m,
ρ1=2000kgm−3, cL,1=3200ms−1, ν =0.2) and plates 2 and 3 represent the flanking walls (x 2=3.5m,
x 3=3.0m, y2=y3=2.4m, z 2=z 3=0.1m, ρ2=ρ 3=600kgm−3, cL,2=c L,3=1900ms−1, ν=0.2).
ANSYS software was used to generate the FEM data with the SHELL63 element (dimensions <λB/6)
and ’rain-on-the-roof’ excitation. All test constructions had simply supported plate boundaries and a
simply supported junction line such that only bending wave motion was considered. The dissipative loss
factor, ηd(FEM)=f −0.5 was used to simulate the total loss factor that would be encountered for walls that
were fully connected in complete buildings. The ESEA ensemble was created through the use of random
numbers drawn from a normal distribution to vary the wall dimension perpendicular to the junction for
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all plates. N (µ, σ) used the x dimensions as the mean value µ with a standard deviation σ=0.25m. This
ensemble contained thirty members. Single frequency data were generated to create third octave band
data in the range 50Hz − 1kHz. To reduce computation times, the number of single frequencies in each
band depended upon the modal overlap factor (calculated using ηd(FEM) and the local mode count for
bending modes on plates with all boundaries simply supported). For M<0.5, 2Hz steps were used to
calculate the frequencies for each band. For M ≥0.5, three frequencies were used in each band where one
frequency was the band center frequency with the other two frequencies equally spaced over the third
octave bandwidth.
The modal overlap factors and mode counts for the T-junction plates are shown in Figure 1 for all thirty
ensemble members. These indicate the frequency ranges in which the modal overlap factor, M<1 and
the local mode count, N<5. It also highlights the role of the ESEA ensemble as trying to ensure that
with low modal density subsystems, there are members of the ensemble that have a local eigenfrequency
that falls within each third octave band of interest. In practice, the use of a global mode approach such
as FEM means that it is the global eigenfrequencies that are of interest. However, this figure is intended
to provide an overview of the ensemble from the local mode viewpoint of SEA.

Figure 1: Ensemble data for the T-junction; modal overlap factor (lower curves) and mode count
(upper curves).

4 - STATISTICAL DISTRIBUTIONS OF FEM ESEA CLF DATA
The aim of this section is to assess the normality of the linear CLF using normal quantile plots. Example
normal quantile plots are shown on Figure 2 for both linear and logarithmic η 12 values for the fourteen
third octave bands in the range, 50Hz − 1kHz. From Fahy and Mohammed [1], it is expected that non-
normal distributions will occur for the linear CLF when M<1. In these example plots, all third octave
bands have M<1 for at least one of the subsystems i and j that are involved in η ij. The linear CLF
data indicates that when M<1, the distributions can have significant right skew. Therefore a logarithmic
transformation can be applied to determine if the linear CLF ensemble could be described as a lognormal
distribution. The transformation to logarithmic CLF values gives rise to sufficiently straight lines that
the linear CLF can be described as a lognormal distribution.
The evidence in this section (albeit limited) indicates that there is potential in the use of the ESEA
ensemble for subsystems with low modal density and low modal overlap. The ability to determine
statistical parameters that describe the lognormal distribution of the linear CLF facilitates its inclusion
in predictive SEA using the matrix solution. The next step is to obtain the expected range of Dv,ij by
using the FEM ESEA CLF 95% confidence limits in predictive SEA.

5 - PREDICTIVE SEA USING FEM ESEA CLF DATA
The required output from the SEA model is the velocity level difference, Dv,ij in decibels where i is the
source subsystem and j is the receiving subsystem. This section compares the FEM ensemble Dv,ij data
with ensemble average, minimum and maximum Dv,ij data determined from predictive SEA using the
FEM ESEA CLF. Example Dv,ij data are shown on Figure 3. Comparison of predictive SEA using the
FEM ESEA CLF with the FEM ensemble members allows a check on the ESEA matrix inversion and
the assumption of a lognormal distribution for the linear CLF.
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Figure 2: T-junction; simply supported junction line; normal quantile plots for linear η12 (left) and
h12 in dB (right); fourteen third octave bands, 50Hz −1kHz; ensemble members: 30.

Figure 3: T-junction; simply supported junction line; vibration level differences Dv ,12 (left) and Dv ,21

(right); FEM ensemble with average, minimum and maximum SEA predictions using the ensemble
average and 95% confidence interval FEM ESEA CLF data; ensemble members: 30.

Dv,ij data determined using SEA wave theory are also included on the graphs. Although Dv,ij from SEA
wave theory is a reasonable approximation for the ensemble average Dv,ij when M<1 and N<5, the range
of expected values can be similar or greater in magnitude to the ensemble average value. This provides
the motivation for determining the expected range of values. The minimum and maximum Dv,ij data
determined from all permutations of the FEM ESEA CLF 95% confidence intervals are seen to provide
a satisfactory estimate of the expected range. In general, the minimum Dv,ij value tends to be a slight
underestimate and can be considered to err on the side of caution.

6 - CONCLUDING DISCUSSION
For the T-junction in this paper and the L-junction in a previous paper [7], there were no significant
problems with negative ILF or CLF values from the ESEA matrix inversions despite the relatively high
matrix condition numbers that occurred when the modal density and modal overlap was low. The only
negative CLF values occurred for transmission across the straight section of the T-junction. However, in
this case at least 70% of the ensemble members gave positive CLF values. This is a benefit of the ESEA
ensemble approach over that of a single deterministic analysis from which the latter might lead to the
conclusion that SEA is not appropriate. When the majority of the ESEA ensemble members have positive
CLF values, this provides sufficient motivation to attempt an SEA model. However, future work could
consider matrix-fitting procedures [8] to try and avoid negative CLF values. The statistical distribution of
the linear FEM ESEA CLF was shown to approximate a lognormal distribution for engineering purposes.
This allows statistical confidence intervals for the CLF to be used in both SEA path analysis and in the
full matrix solution. Numerical experiments were used to assess the definition and application of the
FEM ESEA ensemble with the full matrix solution. They provide some evidence that this approach
can be of use in describing the large variation in response that occurs between ’similar’ plate systems in
which the plates have low modal density and low modal overlap.
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