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ABSTRACT
Nearfield acoustic holography has been shown to be a powerful tool for the study of sound radiation from
vibrating structures. In the most manageable form of holography, reconstructions of the surface of the
source can be obtained if the surface coincides with a level surface of a separable coordinate system. At
Penn State University a new technique using spherical wavefunctions and singular value decomposition
was developed for holographically reconstructing arbitrarily shaped sources. Computer implementations
have become feasible with the availability of high speed computers. A successful application of the
technique was an explanation of the measured radiation damping of elastic solids in a high density gas.

1 - INTRODUCTION
An important operation in Nearfield Acoustic Holography (NAH), and in many theoretical and measure-
ment techniques in noise control, is the calculation of the sound field radiated by a source with a known
surface velocity. Two common methods for performing calculations are a) using a set of eigenfunctions
found by the method of separation of variables and evaluating these for level surfaces of the separable
coordinate system [1], and b) evaluating the free space Green’s function numerically at a set of points on
a surface and using numerical matrix inversion techniques [2,3]. The first method has many advantages,
including trouble-free numerical implementation, but has the fundamental limitation of being applicable
only to level surfaces of separable coordinate systems. The second method is applicable to arbitrarily
shaped surfaces, and does not require evaluating special functions (Bessel functions, spherical harmonics,
etc.), but it has a substantial problem at certain frequencies (interior resonances of the shape) which is
manifest as the ill-conditioning of the matrices for numerical inversion. A third, relatively new, method
was introduced by Koopman [4] in 1989 and extended by Huang and Maynard [5,6]. This paper dis-
cusses some details of this method and presents some results from an application where the method was
the only one which could correctly explain experimental measurements of radiation damping for objects
of non-trivial shape vibrating in a high density gas [7]. Complete details and the source code for the
computer programs have been available at the Web site ftp://ftp.phys.psu.edu/pub/maynard/sphwav,
with a few updates, since their origin in 1996.
The key to the new method was the realization that solving the Surface Helmholtz Integral Equation
numerically for an odd-shaped surface is not necessary if one fits data points with a set of functions which
satisfy the Helmholtz equation. That is, functions which satisfy the Helmholtz equation automatically
satisfy the Surface Helmholtz equation for any surface whatsoever. An actual physical surface will create
a particular unique wave field which satisfies surface boundary conditions and the Surface Helmholtz
Integral equation. However, once created, the wavefield may be expanded with a complete set of wave-
functions satisfying the Helmholtz equation, and each wave function will individually satisfy the Surface
Helmholtz Integral equation, while the superposition of wavefunctions satisfies the particular boundary
condition of the physical surface. This method seems similar to the original holography method, which
also involved an expansion in eigenfunctions of the Helmholtz equation. However, in the new method,
the expansion coefficients are not found with a theoretical decomposition on a level surface of a separable
coordinate system, but instead are found by numerically fitting data (e.g. with a least-squares method)
on whatever surface is convenient.
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To implement this third method, data could be measured on an arbitrarily shaped surface, preferably
one which closely surrounds the physical source. The measured data is then fit, with a least-squares
numerical method, by adjusting the coefficients of a combination of solutions to the Helmholtz equation.
For most sources, Spherical Wave Functions (SWF) would be a suitable choice for fitting data measured
around the source. The same method works for the interior of source surfaces which radiate inward. By
using Spherical Wave Functions for finite size sources, the problem of exponentially decaying evanescent
fields is completely avoided.
In the section below, the method of solving boundary value problems for the Helmholtz equation with
Spherical Wave Functions is discussed in some detail.

2 - EXPANSIONS WITH SPHERICAL WAVEFUNCTIONS
Assume a time dependence exp (−iωt) and a complex sound pressure field P (~r) = Re {P (~r)} +
iIm {P (~r)} satisfying the Helmholtz equation with wavevector k = ω/c. The complex particle velocity
field is

~v (~r) =
1

ipck
~∇P (~r) (1)

Using separation of variables, we find a complete set of complex linearly independent functions which
radiate out to infinity (an important boundary condition). With three space variables, there must be two
independent constants of separation and two mode labels. Thus we can write for these basis functions:

∇2Φlm (~r) + k2Φlm (~r) = 0 (2)

Any solution to a radiation problem may be written as a linear combination of these functions:

P (~r) =
∑

l

∑
m

AlmΦlm (~r) (3)

Let Alm = alm + iblm and Φlm (~r) = Rlm (~r) + iSlm (~r), where the new constants and fields are purely
real. Now

P (~r) =
∑

l

∑
m

[(almRlm (~r)− blmSlm (~r)) + i (almSlm (~r) + blmRlm (~r))] (4)

The known boundary condition is the normal component of the particle velocity at a surface given by
points ~rs. Note that the known surface velocity is purely real. We let the known data be given by the
real function defined by

f (~rs) = ρcn̂ (~rs) · ~v (~rs) (5)

where n̂ (~rs) is the unit normal at the surface point ~rs. Combining Eqs. 1, 4, and 5, we have

f (~rs) =
∑

l

∑
m

[
alm

(
1
k

n̂ (~rs) · ~∇Slm (~rs)
)

+ blm

(
1
k

n̂ (~rs) · ~∇Rlm (~rs)
)]

−i
∑

l

∑
m

[
alm

(
1
k

n̂ (~rs) · ~∇Rlm (~rs)
)
− blm

(
1
k

n̂ (~rs) · ~∇Slm (~rs)
)]

=
∑

l

∑
m

[(almS′lm (~rs) + blmR′lm (~rs))− i (almR′lm (~rs)− blmS′lm (~rs))]

(6)

Since f (~rs) is purely real, the imaginary part of the left hand side of Eq. 6 must vanish. Now assume
that the normal component of the particle velocity field is known at a finite set of discrete points (~rs)
with s = 1, 2, 3, ...N . We simplify notation by writing f (~rs) = fs, and similarly for other functions of
~rs. We use the symbol u as an index similar to s. We also simplify notation by letting the one integer µ
index the two subscripts l and m: µ = [l (µ) ,m (µ)]. We truncate to a finite number of basis functions,
so that µ = 1, 2, 3, ...L. Let ν be an index similar to µ. Finally, we use the convention that an index
repeated in a term indicates a sum over that index. Now we can rewrite the real and imaginary parts of
Eq. 6 as

fs = S′sµaµ + R′sµbµ (7)

R′sµaµ = S′sµbµ (8)
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Now fs is a vector of length N, aµ and bµ are vectors of length L, and R′sµ and S′sµ are N and L matrices.
We shall have N > L, so that the matrices are not square. The method of Singular Value Decomposition
(SVD) [8] allows one to find the inverse of such matrices. Let Tνµ be the inverse of S′sµ. Multiplying Eq.
8 by Tνµ solves for the vector b in terms of the vector a :

bν = TνuR′uµaµ (9)

Substituting Eq. 9 into Eq. 7 yields

fs =
(
S′sµ + R′sνTνuR′uµ

)
aµ (10)

Use SVD a second time to find the inverse of the matrix in parentheses in Eq. 10. Indicating this inverse
with Qµs we now have aµ = Qµsfs. This is equivalent [8] to adjusting the coefficients aµ to least-squares
fit the boundary data fs. With Eq. 9 we also have bµ, and from Eq. 4 we have P (~rs). With P (~rs) and
f (~rs) = ρcn̂ (~rs) · ~v (~rs), all other acoustic quantities may be calculated using closed-form expressions.
We separate variables in spherical coordinates (r, θ, φ) but ~rs and n̂ (~rs) will be given in cartesian co-
ordinates (x, y, z ). We make all lengths non-dimensional by multiplying by the wavenumber k = ω/c.
We simplify notation by letting kx → x, ky → y, kz → z, kr → r, and (1/k) ~∇ → ~∇. We also define
ζ = cosθ.
Separating variables in spherical coordinates yields the spherical wave functions:

Φlm (r, θ, φ) = (jl (r) + iyl (r)) (cosmφ + sinmφ)Ylm (cosθ) (11)

where Ylm (ζ) =
√

((2l + 1) /4π) ((l −m)!/ (l + m)!)Pm
l (ζ). The jl and yl are the spherical Bessel func-

tions, and the Pm
l are the associated Legendre polynomials. The Ylm are similar to the spherical

harmonics, but with the φ dependence removed; the φ dependence is included explicitly in Eq. 11. Note
that −l ≤ m ≤ l. The expression for Ylm is for m ≥ 0 only; for m < 0 we use the Condon and Shortley
phase: Yl,−m (ζ) = (−1)m

Ylm (ζ). We truncate the number of basis functions by letting L max be the
highest order for the spherical Bessel functions. The total number of basis functions is (Lmax + 1)2.
The real and imaginary parts of Φlm and their derivatives are readily determined. A Jacobian relates
quantities in the spherical coordinate system to the data in cartesian coordinates. Details are available
in an earlier paper [9].
It should be noted that some functions may have indeterminate forms (e.g. when cosθ = ±1), but these
may be handled analytically [9]. The spherical Bessel functions and the associated Legendre functions
may be calculated by computer using the upward and downward recursion relations [8]. The derivatives
of the functions may also be found by computer using standard relations with lower order functions.

3 - TESTING AND APPLYING THE SWF METHOD TO ACTUAL MEASUREMENTS
The SWF computer programs were developed in response to a request to explain some experimental
measurements on elastic solids vibrating in a high pressure (high density) gas. When the solids were
driven at resonance frequencies, the quality factors (Q’s) were lowered as a result of the radiation of
sound energy into the surrounding gas. While the solids had simple shapes (rectangular parallelepipeds)
they were not level surfaces of a separable coordinate system, and the usual approximations (e.g. each
face radiating independently as a baffled planar source) did not agree with the experimental data. The
SWF calculation gave very good agreement.
In order to test the computer programs, some model sources were devised. One set of sources were
spheres with vibrating end-caps; the computer programs gave correct results for both real and imaginary
parts, as found in Morse [10]. Other model test sources had non-trivial shapes (cubes), but with surface
velocities which yielded theoretically predictable power radiation at very low and very high frequencies.
Two of these cube sources, as well as two of the modes of the resonating elastic solids discussed above,
are illustrated in Fig. 1.
One cube source had four rigid side faces, and the top and bottom faces oscillated in phase (outwardly), as
indicated by the arrows in Fig. 1a. At very low frequencies this would radiate as a simple monopole source.
Another cube source had the top and bottom faces oscillating out of phase, as indicated by the arrows
in Fig. 1b. At very low frequencies this would radiate as a simple dipole source. At high frequencies,
the vibrating surfaces of the two model test sources would be highly directional, and could be treated as
independent baffled planar sources. Figs. 1c and 1d illustrate two of the normal modes of vibration of
the elastic solid which was measured experimentally. It should be noted that the SWF method does the
equivalent of determining the multipole strengths of these sources in the difficult frequency range where
the size of the source is near the wavelength in the sound medium.
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Figure 1: Model test sources and experimentally measured sources; (a) model source with faces
oscillating in phase, a simple monopole at low frequencies; (b) model source with faces oscillating out of
phase, a simple dipole at low frequencies; (c) and (d) modes of vibration of an elastic solid whose sound

power radiation was measured experimentally.

The results of the SWF calculations are presented in Fig. 2. Each section shows the power radiated
versus frequency, expressed as the sample size (the edge length of the cube, E ) divided by the sound
wavelength λ. Figs. 2a through 2d are for the sources presented in Figs. 1a through 1d, respectively.
In Figs. 1a and 1b, the bold lines at the lower left and upper right indicate the theoretical limits for
very low and very high frequencies. The SWF calculated results are square points and the lines through
them are simply a guide to the eye. For Fig. 2a, the power varies as (E/λ)2 at low frequencies, as for a
monopole source. For Fig. 2b, the power varies as (E/λ)4 at low frequencies, as for a dipole source. For
both Fig. 2a and 2b, the variation in the data at high frequency is not scatter, but is an oscillation of
the power for frequencies where E/λ ≈ 1.

Figure 2: Results of the spherical wave function calculations; figures (a) through (d) are for the
sources indicated in Fig. 1a through 1d respectively.

Figs. 2c and 2d show the interesting frequency dependence of the surface velocity fields indicated in Figs.
1c and 1d. Of course, in the experimental measurements the solid was oscillating a just one natural
frequency. The experimental results at the appropriate frequencies are indicated by the open circles in
Figs. 2c and 2d. Although the experimental accuracy was limited, the results are in agreement at a 15
% level. Calculations with methods other than the SWF method gave results which were in error by a
factor of 3.
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