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ABSTRACT
The present paper deals with the following problems in planar Near-field Acoustical Holography. In
some cases it is very difficult or even impossible to measure the required complete regular rectangular
measurement grid. This may be due to obstacles or hazardous measurement conditions, such as high tem-
peratures or moving parts. Another type of problem is a bad signal discovered only after a measurement
has been completed. It may be then impossible or at least very expensive to re-take the measurement. A
general solution to the problem is to use an interpolation procedure capable of interpolating the complex
sound pressure between an arbitrary set of measurement positions in a plane. The paper describes a new
such interpolation procedure, which is optimized to the characteristics of the sound pressure distribution
over a plane at some distance from the sound sources. Some computer simulations are presented, show-
ing that over the major part of the frequency range, the new method provides very small interpolation
errors. The paper also presents results from an actual measurement.

1 - INTRODUCTION
Some basic concepts of Near-field Acoustical Holography need to be stated first. Figure 1 illustrates the
geometry of the measurement problem. The sound pressure is measured over a plane z = z0 > 0 in the
near-field region of a sound source. All parts of the source are assumed to be in the half space z < 0,
and the half space z ≥ 0 is assumed to be source free and homogeneous.

Figure 1: Measurement geometry.

The complex sound pressure field p (r) = p (x, y, z) at a given angular frequency ω fulfils the homogeneous
wave equation in the half space z ≥ 0:

∇2p + k2p = 0, z≥ 0 (1)
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k ≡ ω

c
being the wave number.

For any given z -coordinate, we now introduce the following Fourier transform pair of the sound pressure
in the two dimensions (x,y):

p (x, y, z) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
P (kx, ky, z) e−j(kxx+kyy)dkxdky (2)

P (kx, ky, z) =
∫ ∞

−∞

∫ ∞

−∞
p (x, y, z) ej (kxx+kyy)dxdy (3)

where (kx,ky) are the spatial angular frequencies. This pair exists for any xy-plane with z ≥ 0. If we
insert the Fourier transform expression (2) for p(r) into the wave equation (1) and take the Fourier
transform, we obtain the following one-dimensional differential equation in z :

[
∂2

∂z2
+ k2

z

]
P (kx, ky, z) = 0, k2

z ≡ k2 − k2
x − k2

y, z≥ 0 (4)

When all sources of the sound field are in the half space z< 0 , then the complete solution to (4) can be
written as

P (kx, ky, z) = P (kx, ky, z0) e−jkz (z−z0), z 0≥ 0, z ≥ 0 (5)

where kz is a function of the spatial angular frequencies (kx,ky):

kz ≡





√(ω

c

)2

− k2
x − k2

y for k2
x + k2

y ≤
(

ω
c

)2

−j

√
k2

x + k2
y −

(ω

c

)2

for k2
x + k2

y >
(

ω
c

)2
(6)

The circle in the spatial frequency plane defined by k2
x +k2

y=
(ω

c

)2

is called the Radiation Circle. High

spatial frequencies outside the radiation circle are seen from equation (5) and (6) to be exponentially
attenuated in the direction away from the source.
Since the sound pressure field is measured in the plane z = z0, the plane wave spectrum P can be
obtained from equation (3) with z equal to z 0. Formulae (5) and (2) then allow the sound pressure field
p for any z ≥ 0 to be calculated.

2 - INTERPOLATION OF BAD MEASUREMENT POINTS
Since for the interpolation we are concerned only with the sound pressure in the measurement plane,
z = z0, we introduce a two-dimensional position vector R ≡ (x, y) in that plane. The pressure in the
measurement plane can now be written as p(R,z 0, ω). For convenience we shall omit the frequency
parameter ω and write just p(R).
We assume that the sound pressure p(R n) has been measured at a set of N positions Rn ≡ (xn, yn) in
the measurement plane. Without loss of generality we can restrict us to estimation of the sound pressure
p (0) ≡ p (0, 0) at the origin. We wish to estimate p(0) as a linear combination of the measured sound
pressure data p(Rn):

p (0) ≈ p̃ (0) ≡
N∑

n=1

cn · p (Rn) =
N∑

n=1

(an + jbn) · p (Rn) (7)

and we wish to use a set of complex coefficients cn = an+jbn which minimizes the average estimation error
for typical sound fields at a distance d from the sound sources. The characteristic that we shall make use
of is the spatial frequency bandwidth limitation of the sound pressure distribution in the measurement
plane after the propagation over the distance d from a parallel source plane. This bandwidth limitation
follows from equation (5) and (6).
In the Fourier transform pair (2) and (3), the sound pressure in the measurement plane is expressed as
an infinite sum of elementary waves e−jK·R, where K ≡ (kx, ky) is a ”point” in the spatial frequency
domain. Notice that these waves have the same ”plane wave form” in the measurement plane, no matter
if the spatial frequency K is inside the radiation circle or outside. Only the z -dependence is very different.
Based on the above considerations, we require the linear interpolation formula (7) to provide good
interpolation estimates for all the elementary waves e−jK·R, but with a weight on the estimation error
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that depends on the attenuation of the waves over the distance d from the source surface. Explicitly, we
require good estimates for the weighted elementary waves

pK (R) ≡ W (K) · e−jKR = W (kx, ky) · e−j(kxx+kyy) (8)

with

W (K) ≡
{

1 |K| ≤ k

e−d
√
|K|2−k2 |K| > k

}
(9)

The weighting function (9) corresponds to an assumption about identical amplitude of all spatial fre-
quency components of the sound pressure at the source surface, see equation (5).
The estimation error in (7) for each of the weighted elementary waves is

ε (c,K) ≡ pK (0)−
N∑

n=1

cn · pK (Rn) (10)

and we define the average estimation error as

E (c) ≡ 1
2πk2

∫ ∞

0

∫ 2π

0

|ε (c,K)|2 KdψdK (11)

where (K, ψ) are the polar coordinates of the vector K,

K = (kx, ky) = (Kcos (ψ) ,Ksin (ψ)) (12)

and c = a + jb is a vector containing the complex interpolation coefficients cn, ref. equation (7). After
removal of some terms, which can be shown to equal zero, the integral expression (11) for the average
estimation error E reduces to

E (a + jb) = E0 − 2 ·
N∑

n=1

anC (Rn) +
N∑

n=1

N∑
m=1

[anam + bnbm]C (Rnm) (13)

where Rn ≡ |Rn| are the distances from the estimation position to the measurement positions, Rnm ≡
|Rm −Rn| are the distances between the measurement positions and

E0 ≡ 1
k2

∫ ∞

0

W 2 (K)KdK (14)

C (R) ≡ 1
k2

∫ ∞

0

W 2 (K)J0 (KR)KdK (15)

Here, J 0 is the 0’th order Bessel function. We are looking for the coefficient vector c = a + jb that
minimizes the average estimation error E (c) in equation (13). The minimum of the quadratic function
E (c) is characterized by all partial derivatives being equal to zero:

∂E

∂an
= 0 and

∂ E
∂bn

= 0 (16)

which can be shown to lead to the following equations for the interpolation coefficients:
N∑

m=1

C (Rnm) am = C (Rn) n= 1, 2 , ...,N (17a)

bn = 0 n= 1, 2, ...,N (17b)

The minimum value Emin of the error E (c) is easily shown to be

Emin = E0 −
∑

C (Rn) an (18)

In order to set up the system of linear equations in (17a), we need to calculate the integrals C (Rnm) and
C (Rn), the integral C (R ) being defined in equation (15). Here, the important part inside the radiation
circle, i.e. for |K| ≤ k, can be integrated analytically, and we end up with
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C (R) =
1
k2

∫ k

0

J0 (KR)KdK +
1
k2

∫ ∞

k

J0 (KR) e−2d
√

K2−k2
KdK

=
J1 (kR)

kR
+

1
(2kd)2

∫ ∞

0

(
tJ0

(
kR

√
1 + (t/2kd)2

))
e−tdt

(19)

Because of the exponential factor in the last integral, the integration interval can be truncated, and the
integration can be performed by a numerical quadrature formula, such as a Gauss-Legendre formula.
By minimizing the sum-of-squares interpolation error for all the elementary (plane) waves, we have
implicitly assumed no correlation between these waves. Such a correlation would be present, if for
example the sources were assumed to be always within the area covered by the array. Slightly better
interpolation could be obtained, if such a restriction could be made and exploited, but then the method
would also break down if the assumption were not fulfilled.

3 - COMPUTER SIMULATIONS
The present section will describe a set of simulated measurements with a 6x6 microphone array with
5 cm element spacing. The sound source is a monopole in a source plane at some distance from the
array plane. One of the measured microphone signals is then considered non-applicable, and instead
the pressure at that point is estimated (interpolated) from the remaining 35 microphone signals. The
interpolated pressure is then compared with the true pressure.
In order to gain overview, some averaging of the pressure estimation error is performed, both over the
source positions and over the calculation position in the array. As one should expect, the errors turned
out to be largest close to the borders of the array and smallest at the center. It was chosen to calculate
one average error over the central 4x4=16 calculation positions (Center ) and one over the remaining
20 calculation positions along the borders (Border). In both cases, the relative averaged error has been
calculated from the following formula

Ē ≡ 10 · log

(∑ ‖p− p̃‖22∑ ‖p‖22

)
(20)

where the summation is over the relevant calculation positions and also over the monopole source positions
used in the averaging. The monopole source positions covered a 20x20 grid of the same size as the
microphone array and in a parallel plane.
Figure 2 shows the relative averaged error in the frequency interval from 50 Hz to 3000 Hz for the case
where the monopole source positions are in a plane 7.5 cm from the array plane (z 0 = 7.5 cm). However,
for the interpolation procedure a 50% larger source distance was specified (d = 1.5z 0).

Figure 2: Relative average interpolation error for monopoles at 7.5 cm distance.

4 - MEASUREMENTS
The above interpolation procedure has been implemented in the Non-stationary STSF software package
Type 7712 from Brüel & Kjær and applied in connection with a series of engine measurements, [1], where
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it was discovered after the measurement that one of the microphones had an error. These measurements
were taken with an array having 12 rows and 10 columns of microphones. The bad microphone was in
row 12 and column 9, see Figure 3, which is a screen copy of some of the graphically oriented window for
selection of interpolation positions. The output time signal from the faulty microphone showed rather
strong impulses, perhaps due to electrical noise from the engine.

Figure 3: Selection of interpolation points in 12x10 array.

Figure 4 shows the (Envelope) Active Intensity at the engine surface for the 1/3-octave band at 1000 Hz
− before and after the replacement of the bad microphone signal with interpolated data. The two plots
represent the same instant in time, where a strong noise impulse was measured with the bad microphone.
When the bad microphone signal is used (left plot in Figure 4), then the sound field at the engine surface
needs a very special form in order to focus onto only a single position in the array plane − the position
of the bad microphone.

Figure 4: Active Intensity at the engine surface calculated without (left) and with (right) the use of
interpolation for the bad microphone signal; the dots indicate microphone positions.

5 - CONCLUSION
The planar array interpolation method presented above has proven to be efficient and accurate for
interpolation of bad or non-existing measurement points in a planar grid. Applications include situations,
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where a bad signal is discovered only after a measurement has been completed and situations, where some
positions in a regular rectangular grid cannot be measured due to obstacles or hazardous measurement
conditions, such as high temperatures or moving parts. A future application of the interpolation method
could be interpolation of sparse microphone grid data into a full rectangular grid for Near-field Acoustical
Holography applications.
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