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ABSTRACT
A parabolic equation for a sound pressure field is now widely used for numerical simulations of sound
propagation near an impedance ground in a turbulent, stratified atmosphere. For different realizations
of the temperature and wind velocity fields, the parabolic equation is solved numerically. Then, the
statistical moments of a sound field are calculated from the ensemble of sound pressure realizations.
We employ a different approach for calculating these statistical moments that can be advantageous in
many cases. Starting from a parabolic equation and using the Markov approximation, we derive closed
equations for statistical moments (of arbitrary order) of a sound field propagating near impedance ground
in a turbulent, stratified atmosphere. Then, the derived equations are solved analytically or numerically.

1 - INTRODUCTION
Studies of sound propagation over impedance ground in a turbulent, stratified atmosphere are important
because they help to address many concerns of atmospheric acoustics such as source detection, ranging,
classification, noise pollution near highways and airports, etc. These studies are rather involved and are
usually performed by the following approach (e.g., [1,2]). A realization of random fields of temperature
T ′

(
~R
)

and the x-component vx

(
~R
)

of wind velocity fluctuations is synthesized numerically. Here,
~R = (x, y, z), where x, y and z are the Cartesian coordinates with the x-axis in the direction from
the source to receiver, z-axis directed upward, and the plane z = 0 coinciding with the surface of the
ground. These random fields are superimposed on mean vertical profiles of sound speed c (z) and wind
velocity vector ~V (z). Then, a realization of the sound field p due to a monochromatic sound source in
such a turbulent, refractive atmosphere is calculated numerically by using the parabolic equation. This
procedure is repeated for many realizations of T ′

(
~R
)

and vx

(
~R
)
. Finally, the statistical moments of

the sound field are calculated from realizations of p.
The main idea of the present paper is to develop a simpler approach for calculating the statistical moments
of p in a turbulent, stratified atmosphere. In this approach, first we derive closed analytical equations for
the statistical moments of p and only then do we solve these equations numerically or analytically. For
electromagnetic wave propagation over an impedance boundary in a turbulent, refractive atmosphere, a
similar approach was considered in references [3,4].

2 - PARABOLIC EQUATION
Let the source be located in the plane x = 0. The sound pressure p due to the source satisfies boundary
conditions and Eq. (6.1) from [5]. The right hand-side of this equation contains the source term. We
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assume that for x > 0 solution of this equation can be approximated by solution of the following parabolic
equation [5]:

[∂/∂x + M (~r)− (ik0/2) ε (x,~r)] p (x,~r) = 0. (1)

Here, ~r = (y, z) are the transverse coordinates; ε = −T ′/T0 − 2vx/c0 is a linear combination of tem-
perature and wind velocity fluctuations; k0, T0 and c0 are reference values of the sound wavenumber,
temperature, and sound speed; and the operator M is given by:

M = (2ik0)
−1 (

k2 + k2
0 +∇2

⊥
)

+ ~V⊥ · ∇⊥/c0, (2)

where k
(

~R
)

= k0c0/
[
c
(

~R
)

+ Vx

(
~R
)]

is the sound wavenumber, Vx

(
~R
)

and ~V⊥
(

~R
)

are the com-

ponents of the mean velocity vector ~V
(

~R
)

in the direction of the x-axis and perpendicular to it, and
∇⊥ = (∂/∂y, ∂/∂z). Equation (1) should be supplemented by the initial condition p (x = 0, ~r) = p0 (~r)
which is assumed to be known and the following boundary condition at z = 0:

(∂/∂z + ik0β) p (x, y, z) = 0, (3)

where β is the normalized admittance of the ground.
When deriving the statistical moments of p, we will assume that the random field ε

(
~R
)

is δ-correlated
along the x-axis. In this case, which is also known as the Markov approximation [6], the corre-
lation function B (x,~r; x′, ~r′) = 〈ε (x,~r) ε (x′, ~r′)〉 of the random field ε is given by B (x,~r;x′, ~r′) =
δ (x− x′) b (x;~r;~r′). Here, δ is the delta function. Detailed consideration of the correlation functions B
and b can be found in section 7.5 of Ref. [5].
Starting from parabolic equation (1) and using the Markov approximation, we have derived closed equa-
tions for the statistical moments of a sound field propagating near the impedance ground in a turbulent,
stratified atmosphere. The subsequent sections present such closed equations and their analysis for
the mean sound field 〈p〉, the transverse coherence function Γ (x;~r1;~r2) = 〈p (x,~r1) p∗ (x,~r2)〉, and the
statistical moment of order n + m:

Γ (x;~r1, ..., ~rn;~r′1, ..., ~r
′
m) = 〈p (x,~r1) ...p (x,~rn) p∗ (x,~r′1) ...p∗ (x,~r′m)〉 . (4)

3 - MEAN SOUND FIELD
A closed equation for the mean sound field is given by:

[
∂/∂x− (i/2k0)

(
k2 + k2

0 +∇2
⊥

)
+ ~V⊥ · ∇⊥/c0 +

(
k2
0/8

)
b (x;~r;~r)

]
〈p (x,~r)〉 = 0. (5)

This equation should be supplemented by the initial condition 〈p (x = 0, ~r)〉 = p0 (~r) and the boundary
condition at z = 0, which follows directly from Eq. (3):

(∂/∂z + ik0β) 〈p (x, y, z)〉 = 0. (6)

Equation (5) is valid for anisotropic, inhomogeneous turbulence as well as for isotropic, homogeneous
turbulence. For the latter case, b (x;~r;~r′) = b (~r − ~r′) so that in Eq. (5) b (x;~r;~r) = b (0). In this case,
Eq. (5) has the following solution:

〈p (x,~r)〉 = exp
(
k2
0b (0) x/8

)
p(0) (x,~r) . (7)

Here, p(0) (x,~r) is the sound field that would be observed in the absence of random inhomogeneities. The
field p(0) (x,~r) satisfies Eq. (5) with b = 0 and the same boundary and initial conditions as for 〈p (x,~r)〉.
According to Eq. (7), the mean sound field attenuates exponentially. Note that Eq. (7) has the same
form as a formula for the mean sound field in an unbounded turbulent atmosphere, see Eq. (7.59) from
[5].

4 - COHERENCE FUNCTION
A closed equation for the coherence function Γ of a sound field is given by
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∂Γ (x;~r1, ~r2)
∂x

− i

2k0

[
∇2
⊥,1 −∇2

⊥,2 + k2 (x,~r1)− k2 (x,~r2) +
2ik0

c0

(
~V⊥ (x,~r1) · ∇⊥,1 + ~V⊥ (x,~r2) · ∇⊥,2

)]

×Γ (x;~r1, ~r2) +
k2
0

8
[b (x;~r1;~r1) + b (x;~r2;~r2)− 2b (x;~r1;~r2)] Γ (x;~r1, ~r2) = 0.

(8)
Here, ∇⊥,1 = (∂/∂y1, ∂/∂z1) and∇⊥,2 = (∂/∂y2, ∂/∂z2). The coherence function Γ satisfies the following
initial condition: Γ (x = 0;~r1;~r2) = p0 (~r1) p∗0 (~r2). Also, Γ should satisfy the boundary condition

(∂/∂z1 + ik0β) Γ (x;~r1;~r2) = 0 (9)

at z1 = 0, and the boundary condition

(∂/∂z2 − ik0β
∗) Γ (x;~r1;~r2) = 0 (10)

at z2 = 0. At present, we do not know whether Eq. (8) can be solved analytically. It could be possible
to obtain approximate analytical solutions of this equation. We have, however, succeeded in devising
numerical methods for solving this equation directly in a turbulent, stratified atmosphere, where k
depends only on z. When the two-dimensional version of Eq. (8) is discretized in the vertical coordinate
with mesh spacing ∆z, one obtains

∂Γ (x; zm; zn)
∂x

=
i

2k0∆z2
[Γ (x; zm−1; zn) + Γ (x; zm+1; zn)− Γ (x; zm; zn−1)− Γ (x; zm; zn+1)]

+ (am + a∗n − dmn) Γ (x; zm; zn) ,
(11)

where an = i
[
k2 (zn)− k2

0

]
/2k0 and dmn = b (zm, zm) + b (zn, zn) − 2b (zm, zn). The indices m and n

range from 1 to N , where N is the number of vertical layers. Numerical implementation of the boundary
conditions for G is analogous to that in Ref. [7]. Equation (11) is very similar to the finite-difference
implementation of a two-dimensional diffusion problem, except that the range coordinate x replaces
time in our case, and zm and zn replace the two spatial dimensions. When the equation is recast in
matrix form with the Γ (x; zm; zn) arranged as an N2× 1 vector, one arrives at a linear system involving
premultiplication with an N2×N2 matrix that is tridiagonal with fringes, so-called because the elements
on the main (zeroth), the ±1, and the ±N diagonals are nonzero. It is a huge matrix for any practical
problem. Since the upper absorbing layer in an atmospheric parabolic equation (PE) solution is usually
about 30 wavelengths thick, and the vertical spacing of the grid is typically 0.1 wavelengths, N is at
least 300. For low-frequency calculations, N = 1000 is representative. Hence, the matrices would have
dimensions 106 × 106; these 1012 elements could not be stored directly in memory on any computer.
Fortunately, the fringed matrix is highly sparse: only about 5 × 106 elements would be nonzero, and it
is feasible to store these nonzero elements.
Solution of such sparse systems is a well-studied problem in numerical analysis. The fringes complicate
matters significantly in comparison to purely tridiagonal systems (as occur in the standard Crank-
Nicolson PE formulation for the pressure field). We attempted several conventional methods for solving
Eq. (11), but generally found them unsatisfactory. Eventually, we settled on a method where only the
coherent part of the solution is propagated at each range step, and the incoherent part is then determined
by iteration. This method will be described in more detail in an upcoming publication.
An example of a calculation for sound propagation in an upward-refracting atmosphere is shown in Fig.
1. The vertical axis corresponds to the mean sound pressure level relative to cylindrical spreading. The
source frequency is 40 Hz, source height is 5 m, the receiver height is 2.6 m, and β = (20.8 + i19.2)−1.
The figure compares the average of 40 runs made with a standard Crank-Nicholson PE (based on the
description in Ref. [7]) to the direct solution of Eq. (11). A turbulence correlation function based on the
von Karman model [8,9] was used in the calculations. Both methods predict nearly identical increases of
sound levels in the shadow zone due to scattering by turbulence. Equation (11) yields a much smoother
prediction, however. The main disadvantage of Eq. (11), as currently implemented, is its computational
time: it required about 24 hours on a 500-MHz Pentium III PC, which was 12 times longer than the
total for the 40 standard PE runs.

5 - STATISTICAL MOMENTS OF ARBITRARY ORDER
A closed equation for the statistical moment of a sound field of order n + m is given by:
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Figure 1: Comparison of mean sound pressure levels for upward refraction, calculated using various
methods; dash-dotted line: calculation without turbulence; solid line: Eq. (11) with turbulence; dashed

line: average of 40 runs of a standard Crank-Nicholson PE using random ”snapshots”’ of the
turbulence; dotted line: 90% confidence intervals for the 40 runs.

∂Γn,m

∂x
− i

2k0
[M (~r1) + ... + M (~rn)−M∗ (~r′1)− ...−M∗ (~r′m)] Γn,m +

k2
0

8




n∑

i=1

n∑

j=1

b (x;~ri;~ri)


+

m∑

i=1

m∑

j=1

b
(
x; ~r′i;~r′j

)
− 2

n∑

i=1

m∑

j=1

b
(
x;~ri;~r′j

)

 Γn,m (x;~r1, ..., ~rn, ~r′1, ..., ~r

′
m) = 0.

(12)
This equation for Γn,m should be supplemented by the initial and boundary conditions. The former is
given by:

Γn,m (0;~r1, ..., ~rn;~r′1, ..., ~r
′
m) = 〈p0 (x,~r1) ...p0 (x,~rn) p∗0 (x,~r′1) ...p∗0 (x,~r′m)〉 . (13)

The boundary conditions formulated at zi = 0 are

(∂/∂zi + ik0β) Γn,m (x;~r1, ..., ~rn;~r′1, ..., ~r
′
m) = 0, i = 1, ..., n, (14)

and at z′j = 0 they are

(
∂/∂z′j − ik0β

∗) Γn,m (x;~r1, ..., ~rn;~r′1, ..., ~r
′
m) = 0, j = 1, ..., m. (15)

Note that Eqs. (5) and (8) are particular cases of Eq. (12) for n = 1, m = 0 and n = 1, m = 1,
respectively. Equation (12) for n = 2, m = 2 allows one to study intensity fluctuations of a sound wave
propagating in a turbulent atmosphere.
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