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ABSTRACT
A rigorous theory of interference of direct and ground-reflected waves in a turbulent atmosphere was
developed by Clifford and Lataitis (JASA, 73, 1545-1550, 1983). The primary goal of the present
paper is to generalize Clifford and Lataitis’s theory by taking into account developments in atmospheric
acoustics since 1983. In particular, we reformulate the geometry of the problem that allows us to use
the parabolic equation method. Furthermore, we take into account that the direct and ground reflected
waves are scattered by both temperature and wind velocity fluctuations, and use Kolmogorov, Gaussian,
and von Karman spectra to model spectra of these fluctuations. Finally, we obtain a formula for the
mean squared sound pressure and relate it to that of the coherence function of a spherical sound wave
for line-of-sight propagation.

1 - INTRODUCTION
In many cases of sound propagation in the atmosphere, a source and receiver are located close the ground.
If the horizontal distance L between the source and receiver is not too large, the effects of atmospheric
refraction can be ignored and the sound field p at the receiver is a sum of the direct wave and that
reflected from impedance ground. In the absence of atmospheric turbulence, the interference between
these two waves could lead to very deep minima in the amplitude of the resulting sound field. However,
temperature and wind velocity fluctuations always exist in the atmosphere. These fluctuations lead to
partial or complete loss of coherence between the direct and ground reflected waves. As a result, the
mean squared sound pressure

〈
|p|2

〉
at the interference minima can be increased by several dozen dB in

comparison to that in a nonturbulent atmosphere. This phenomenon has been studied since the 1960s.
A first rigorous approach for calculating the interference of the direct and ground reflected waves in a
turbulent atmosphere was developed by Clifford and Lataitis [1]. In this reference, it was assumed that
atmospheric turbulence is caused by temperature fluctuations.
Furthermore, log-amplitude and phase fluctuations of the direct and ground reflected waves were cal-
culated by using the Rytov method. Finally, an analytical formula for

〈
|p|2

〉
was derived. Using this

formula,
〈
|p|2

〉
was calculated for a Gaussian spectrum of temperature fluctuations. These results have

been widely used in subsequent research.
The main goal of the present paper is to generalize the theory developed by Clifford and Lataitis [1] in
the following directions. First, we reformulate the geometry of the problem. A new geometry allows us
to use the parabolic equation method, which has a wider range of applicability than the Rytov method.
Secondly, we assume that atmospheric turbulence is caused by both temperature and wind velocity
fluctuations since in most cases the effects of velocity fluctuations on

〈
|p|2

〉
are greater than the effects

of temperature fluctuations (e.g. [2]). Finally, we derive analytical formulas for
〈
|p|2

〉
for Kolmogorov,
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Gaussian, and von Karman spectra of temperature and wind velocity fluctuations. Using these formulas,
the effects of atmospheric turbulence on

〈
|p|2

〉
are studied numerically.

2 - PARABOLIC EQUATION
Let the source and receiver be located at the heights hs and hr above the ground. We will use the
Cartesian coordinate system ~R = (x, y, z) with the center at the source, z -axis directed upward, and
z -axis in the direction from source to receiver. In this case, the plane z=−hs coincides with the surface
of the ground. We assume that the mean wind velocity is zero and the mean temperature T 0 does not
depend on z. Temperature and wind velocity fluctuations in the atmosphere are denoted as T ′

(
~R
)

and
~ν (R′).
For this geometry, calculations of the statistical moments of a sound field are complicated by the presence
of the surface of the ground. Therefore, we reformulate this geometry. In a new geometry, sound
propagates in an unbounded turbulent medium which is symmetrical with respect to the plane z=−hs.
Furthermore, the sound field at the receiver is a sum of the sound field due to the source and that
due to an image source of the strength Q located at the point ~Ri = (0, 0,−hs). (The image source is
symmetrical to the real source with respect to the plane z=−hs.) Here, Q is the spherical-wave reflection
coefficient given by [3]:

Q =
2β

[
1 + i

√
πde−d2

erfc (−id)− β + (hs + hr) /R2

]

β + (hs + hr) /R2
, (1)

where the distance from the image source to the receiver is R2 =
√

(hs + hr)
2 + L2, the ground admit-

tance is β, the complementary error function is erfc, and the numerical distance is

d = [β + (hs + hr) /R2]
√

ikR2/2

where k is the sound wavenumber.
We assume that fluctuations in temperature and wind velocity are relatively weak so that sound backscat-
tering can be ignored. Then, for a new geometry, the sound pressure p at the receiver satisfies the
following parabolic equation [2]:

[
2ik

∂

∂x
+

(
∂2

∂y2
+

∂2

∂z2

)
+ 2k2 (1 + ε/2)

]
p = 0. (2)

Here, ε
(

~R
)

= −T ′
(

~R
)

/T0 − 2νx

(
~R
)

/c0 is a linear combination of temperature and wind velocity
fluctuations. In this formula, c0 is the reference value of the sound speed and vx is the x -component of
~ν. Note that the random field ε

(
~R
)

is symmetrical with respect to the plane x=−hs. In the plane x =
0, the sound field p satisfies the following initial condition:

p (~r) = (2iπ/k) [δ (~r − ~r1) + Qδ (~r − ~r2)] , (3)

where ~r = (y, z), and δ is the delta function. Furthermore, ~r1 = (0, 0) and ~r2 = (0,−2hs) are the
coordinates of the source and image source in the plane x = 0.
It can be shown that Eqs. (2) and (3) are equivalent to initial equations describing sound propagation over
the ground and boundary conditions for two cases: sound propagation over hard boundary in a turbulent
atmosphere and sound propagation over impedance boundary in a nonturbulent atmosphere. Using
physical reasoning, one would expect that Eqs. (2) and (3) approximately describe sound propagation
over impedance boundary in a turbulent atmosphere if the turbulence is relatively weak.
A parabolic equation (2) with the initial condition (3) are the starting equations in our approach for
calculating the mean squared sound pressure

〈
|p|2

〉
. Equations (2) and (3) can also be used for calculating

other statistical moments of a sound field propagating over impedance ground, for example, the coherence
function. Note that parabolic equations have been found to be very convenient for studies of wave
propagation in random media (e.g. [4]). Many classical methods for calculating the statistical moments
of a sound or electromagnetic field are based on parabolic equations. Therefore, we expect Eqs. (2) and
(3) to be very useful for studies of sound propagation over impedance ground in a turbulent atmosphere.

3 - FORMULA FOR
〈
|p|2

〉

The solution of Eq. (2) can be sought in the following form
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p = p1exp (χ1 + iφ1) + p2exp (χ2 + iφ2) . (4)

Here, p1 and p2 are the sound fields due to the source and image source in a nonturbulent atmosphere.
Furthermore, χ1 and φ1 are the log-amplitude and phase fluctuations of a sound field emitted by a source
in a turbulent atmosphere, while χ2 and φ2 are the log-amplitude and phase fluctuations of a sound field
emitted by an image source.
We assume that χ1, φ1, χ2 and φ2 have Gaussian distributions. With the use of Eq. (4), we calculate
the mean squared sound pressure:

〈
|p|2

〉
=

1
R2

1

+
|Q|2
R2

2

+
2 |Q|C
R1R2

cos [(R2 −R1) k + Ω + 〈χ1φ2〉 − 〈χ2φ1〉] . (5)

Here, the brackets 〈〉 denote the ensemble average, Ω is the phase of Q so that Q = |Q| eiΩ, and C is
given by

C = exp
[
〈χ1χ2〉+ 〈φ1φ2〉 − 1

2
(〈

χ2
1

〉
+

〈
χ2

2

〉
+

〈
φ2

1

〉
+

〈
φ2

2

〉)]
. (6)

Equation (5) describes interference between the sound waves emitted by a source and an image source.
The factor C in Eq. (5) characterizes the coherence between these waves and hereafter will be called
the ”coherence” factor. In a nonturbulent atmosphere C = 1, while in a turbulent atmosphere C is less
than 1.
Equations (5) and (6) contain second statistical moments of phase and log-amplitude fluctuations, e.g.〈
|p|2

〉
. In order to calculate these statistical moments, we need to know expressions for χ1, φ1, χ2 and

φ2 in terms of the random field ε. These expressions are found by substituting Eq. (4) into Eq. (2)
and using the first Rytov approximation. Then, the statistical moments of phase and log-amplitude
fluctuations in Eqs. (5) and (6) are calculated. As a result, we obtain that in Eq. (5) the difference
〈χ1φ2〉 − 〈χ2φ1〉 is less than π/2 and can be omitted. Furthermore, the following formula is obtained for
the coherence factor C :

C (h) = exp

[
−k2L

4h

∫ h

0

[b (0, 0)− b (0, z)] dz

]
. (7)

Here, h = 2hshr/ (hs + hr) and b is the two-dimensional correlation function determined by

b (~r) =
∫ ∞

−∞
B (x,~r) dx = 2π

∫
d2K⊥ei ~K⊥·~rΦ

(
0, ~K⊥

)
. (8)

In this formula, B
(

~R
)

is the correlation function of the random field ε, and Φ
(
Kx, ~K⊥

)
is the three-

dimensional spectral density of this field, where Kx and ~K⊥ are the components of the wave vector
~K =

(
Kx, ~K⊥

)
. These functions are described in detail in section 7.2.3 from [2]. It follows from that

section that B
(

~R
)

= BT

(
~R
)

/T 2
0 + 4Bxx

(
~R
)

/c2
0, where BT and Bxx are the correlation functions

of the random fields T ′ and vx. Furthermore, Φ
(

~K
)

= ΦT

(
~K

)
/T 2

0 + 4Φxx

(
~K

)
/c2

0, where ΦT and
Φxx are the three-dimensional spectral densities of these random fields. Note that equations similar to
Eqs. (5) and (7) were also derived in Ref. [5] using Feynman path-integral technique. In this reference,
the case of electromagnetic wave propagation over perfectly reflecting boundary (Q=−1) in a turbulent
atmosphere was considered. Interference of electromagnetic waves in a turbulent atmosphere has been
studied since the 1960s [6].

4 - KOLMOGOROV, GAUSSIAN AND VON KARMAN SPECTRA
Equation (7) for the coherence factor is valid for anisotropic as well as for isotropic turbulence. For the
latter case, this equation is simplified:

C (h) = exp
[
−π2k2L

∫ 1

0

dξ

∫ ∞

0

K [1− J0 (hKξ)]
[
ΦT (K) /T 2

0 + 4F (K) /c2
0

]
dK

]
. (9)

Here, F (K ) is the three-dimensional spectral density of wind velocity fluctuations (e.g. [2]), and J 0 is the
Bessel function. Equation (9) is closely related to the coherence function Γ(r) of a spherical sound wave
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in a turbulent atmosphere for line-of-sight sound propagation, given by Eq. (7.71) from [2]. Comparison
between these equations reveals that

C (h) = Γ (h) /Γ0 (h) , (10)

where Γ0(r) is the value of Γ(r) in a nonturbulent atmosphere. In other words, the coherence factor C
is equal to the normalized coherence function of a spherical sound wave.
Formulas for the coherence function Γ(r) are presented in [2] for Kolmogorov, Gaussian, and von Karman
spectra of temperature and wind velocity fluctuations. These formulas allow us to calculate the coherence
factor C given by Eq. (10).
For the Kolmogorov spectrum, the spectral densities ΦT (K) and F (K ) are given by Eqs. (6.38) from
[2], and the coherence function Γ(r) is given by Eq. (7.38) from [2]. With the use of Eq. (10), we have

CK = exp
(
−k2h5/3L

3DC2
T

8T 2
0

− k2h5/3L
11DC2

ν

4c2
0

)
. (11)

Here, the superscript K stands for the Kolmogorov spectrum, C2
T and C2

ν are the structure parameters of
temperature and wind velocity fluctuations, and the numerical coefficient D ≈ 0.364. For the Gaussian
spectrum, ΦT (K) and F (K ) are given by Eqs. (6.40) and (6.43), and Γ(r) is given by Eq. (7.107) from
[2]. Using the latter formula and Eq. (10), one obtains

CG = exp
{
−2γG

T L
[
1− (√

πl/2h
)
erf (h/l)

]− 2γG
ν L

[
1− (√

πl/4h
)
erf (h/l)− 1

2
e−h2/l2

]}
. (12)

Here, the superscript G stands for the Gaussian spectrum, l is a scale of temperature and wind velocity
fluctuations for the Gaussian spectrum, erf (h/l) is the error function, γG

T =
√

πk2σ2
T l/

(
8T 2

0

)
and

γG
ν =

√
πk2σ2

ν l/
(
2c2

0

)
are the extinction coefficients of the mean sound field due to temperature and

velocity fluctuations, respectively. Note that for the case when wind velocity fluctuations are zero Eq.
(12), was obtained in [1].
For the von Karman spectrum, ΦT (K) and F (K ) are given by Eqs. (6.44) and (6.45), and Γ is given by
Eq. (7.114) from [2]. For this spectrum, the coherence factor C is given by

CνK = exp

{
− 2L

K0h

∫ K0h

0

dξ

[
γνK

T

[
1− 2

1
6 ξ

1
6

6
K 5

6
(ξ)

]]
+ γνK

ν

[
1− 2

1
6 ξ

1
6

6

(
K 5

6
(ξ)− ξ

2
K 1

6
(ξ)

)]}
.

Here, the superscript vK stands for the von Karman spectrum, K 0 is inversely proportional to the
integral scale length of temperature and wind velocity fluctuations, Kα is the modified Bessel function,
and γνK

T = 10π2Ak2K
−5/3
0 C2

T /
(
10T 2

0

)
and γνK

ν = 6π2Ak2K
−5/3
0 C2

ν/
(
5c2

0

)
are the extinction coefficients

of the mean sound field due to temperature and wind velocity fluctuations, where the numerical coefficient
A = 0.033.
Equations presented in this section are used to study numerically the effects of temperature and wind
velocity fluctuations on the interference of the direct and ground reflected waves in a turbulent atmo-
sphere. Numerical examples will be given during the presentation. Furthermore, in a companion paper
[7], theoretical results presented above are used to explain experimental data obtained in a laboratory
experiment which models sound propagation through a turbulent atmosphere.

ACKNOWLEDGEMENTS
V. Ostashev’s research was supported by an NRC-ETL Research Associateship and by the U.S. Army
Research Office under contract number DAAG55-98-1-0463 (administered by W. Bach).

REFERENCES

1. S. F. Clifford and R. J. Lataitis, Turbulence effects on acoustic wave propagation over a smooth
surface, J. Acoust. Soc. Am, Vol. 73, pp. 1545-1550, 1983

2. V. E. Ostashev, Acoustics in Moving Inhomogeneous Media, E&FN SPON, London, 1997

3. K. Attenborough, S. I. Hayek, and J. M. Lawther, Propagation of sound above a porous
half-space, J. Acoust. Soc. Am., Vol. 68, pp. 1493-1501, 1980



Copyright SFA - InterNoise 2000 5

4. S. M. Rytov, Yu. A. Kravtzov, and V. I. Tatarskii, Principles of statistical radio physics.
Part 4. Wave propagation through random media, Springer, Berlin, 1989

5. A. V. Kukushkin and I. M. Fuks, Reflection formulas for a wave field in a random nonuniform
medium above an ideally reflecting interface, Radiophysics and Quantum Electronics, Vol. 31, pp.
1035-1042, 1980

6. F. G. Bass, S. Ya. Braude, E. A. Kaner, and A. V. Men, Fluctuations of electromagnetic
waves in the troposphere in the presence of separation boundaries, Soviet Physics Uspekhi, Vol. 73,
pp. 89-119, 1961
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