URBAN PLANIFICATION AND GENERATION OF DIVERSE AREAS OF ACOUSTIC SENSIBILITY

R. Alsina

AJUNTAMENT DE BARCELONA, TORRENT DE L’OLLA, 218-220 2°, 08012, Barcelona, Spain

Tel.: 93-291-40-08 / Fax: 93-291-40-32 / Email: ralsina@mail.bcn.es

Keywords: ACOUSTIC, ZONING, NOISE, CITY

ABSTRACT

This paper is about the new noise by-law of Barcelona and one of its most important consequences: the acoustic zoning of the city. The regulation gives guide levels of environmental noise not to be exceeded in the different zones as a function of their definitions, and other factors, as acoustic insulation of buildings depends on these guide levels. Consequently, the following step after the publication of the by-law, has been the zoning of the city, which has been done taking into account the acoustic reality of the city, given by the acoustic map, and the definitions of the acoustic zones, given by the by-law.

1 - INTRODUCTION

More and more the preoccupation for noise as a pollutant element is increasing in all European cities. Whereas classical environmental topics such as water or air have had community initiatives for many years, in the case of noise pollution an overall consensus is needed.

In 1996 the Green Paper of noise was published by the European Community [1]. In it there are diverse aspects for future reference for creating a new Community Directive in noise regulation. The Green paper shows the following needs:

- The priority of giving more importance to environmental noise and make it an indicator of the quality of life.
- Doing campaigns to raise public awareness of noise pollution
- To share legislative responsibility, control, and vigilance between all the diverse levels of the Administration (from EU, State members, to regional and local Administration).
- To propose new Directives to create a new frame for the action against noise pollution.

As a consequence of the application of this Community will, 5 Working Groups (WG) were formed in 1998 and which were later increased to 9 WG.

These groups are in charge of harmonization; sharing knowledge, procedures and legislation of noise matters. These WG are:

<table>
<thead>
<tr>
<th>WG in perception</th>
<th>WG in noise emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG 1 Indices</td>
<td>WG 6 Road transport</td>
</tr>
<tr>
<td>WG 2 Dose-Effect</td>
<td>WG 7 Outdoor machinery</td>
</tr>
<tr>
<td>WG 3 Computation and measurement</td>
<td>WG 8 Railway</td>
</tr>
<tr>
<td>WG 4 Noise maps</td>
<td>WG 9 Aircraft</td>
</tr>
<tr>
<td>WG 5 Abatements</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.
The efforts made by the Community State members also reflect the administration’s co-responsibility on
the matter of environmental noise.
At present, at the level of Spanish State a new noise regulation is being prepared.
In Catalonia the Autonomic Government has also been working in this direction.
At local level, the big cities, as in our case Barcelona (BCN), working with control and vigilance of noise
matters has been applied as of a few years.

2 - THE BY-LAW AND ZONING OF BARCELONA
The Barcelona noise by-law was revised in 1999 and approved in June of the same year. Between other
things the regulation gives guide levels of environmental noise not to be exceeded in the different zones
as a function of their definitions.
The zones and guide levels are:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Definition</th>
<th>Daytime 7-22 h</th>
<th>Night 22-7 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>High acoustic quality territorial sectors</td>
<td>60 dBA</td>
<td>50 dBA</td>
</tr>
<tr>
<td>II</td>
<td>Housing and residential use sectors</td>
<td>65 dBA</td>
<td>55 dBA</td>
</tr>
<tr>
<td>III</td>
<td>Housing, residential, commercial and service use sectors</td>
<td>70 dBA</td>
<td>60 dBA</td>
</tr>
<tr>
<td>IV</td>
<td>Industrial use sectors</td>
<td>75 dBA</td>
<td>65 dBA</td>
</tr>
<tr>
<td>V</td>
<td>Special acoustic zones</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.

The regulation specifies that the guide levels will be increased by 5 dBA in cases of traffic of more than
25,000 vehicles per day, and pedestrian areas must have a 45 dBA level at night.
The intention of the zoning has been to adapt the acoustic reality of the city, showed in the acoustic map,
and the council’s decision to limit the environmental noise levels which are represented by the council
by-law.
The Barcelona acoustic zoning is based on four tools: the acoustic map, the by-law, the “traffic spider”
and the building height map of BCN completed with the aerial photograph.
The acoustic map was made between the years 1995 and 1998, and includes more than 4,700 short-time
measuring points and 100 long-time measuring points [2]. The long-time measures were used to determine
that the noise was constant in the daytime and as a consequence the short-time measures can be taken
at any time during the day. They can also be used to determine the differences between daytime and
night measures to estimate the night noise map.
As a resume the obtained results show that 50 % of Barcelona streets are between the levels of 60 dBA
and 70 dBA and only 7.8 % are above the level of 75 dBA. But the typical distribution of the extensive
central zone of BCN called ”el Eixample” presents big blocks with a big interior area not exposed directly
to the street noise. This means that the percentage of population exposed to high noise levels is always
less than streets exposed to the same level of noise.
For this reason, the percentage of population exposed to between levels of 60 dBA and 70 dBA is 40 %
and only 2.7 % is exposed to superior levels of 75 dBA.
For example the average of the day time levels in the interior areas of these blocks is only 54.2 dBA.
The “traffic spider” is the map of the average vehicle flow per day which circulate on Barcelona streets
and was used to locate the streets with more traffic than 25,000 vehicles per day and to introduce the
correction of 5 dBA taking into account the by-law.
The building height map of BCN together with the aerial photograph permitted the localization of the
interior areas of the blocks and were zoned with the data provided by the acoustic map. All the incoming
data was integrated into one computer program to enable a better and quicker access to information and
greater facilities for future updating.
The zoning has been completed taking into account the measured levels of the acoustic map and the
definition of the zones according to the by-law.
For example a street with the level of 68 dBA would be classified as zone III, but a residential street
with a measured level of 72 dBA would not be classified as zone IV because the definition of zone IV is
of industrial use.
The guide levels above-mentioned are values which can not be surpassed. For this reason no one can set-
up an activity that increases the environmental noise level more than the guide level. On the other hand
the guide levels for the interior of houses is the same for the whole city. This means that the isolating
level of the houses will depend on the exterior level. As a consequence, for the effective application of the by-law, the city zoning is essential so that an activity can find out its emission limit and can determine the necessary isolation in the new houses to be built. The by-law and the zoning have looked for the equilibrium between the acoustic reality and the possibility to improve the acoustic conditions of the city.

3 - CONCLUSIONS

The acoustic zoning of BCN city (Fig. 1) permits defining which is the maximum emission level of any activity and the isolation level in the new houses to be built as a function of their location in the city. At the same time, by combining zoning and acoustic map data, we can extract a deviation map (Fig. 2) of the measured levels by referring to the guide levels, indicating the areas that have surpassed the guide levels and work on improving the acoustic quality of these areas as a priority.

BCN is a consolidated city with all it’s territory occupied. The zoning is a tool even more important in the expanding cities if it is included in the territorial planning, specifying areas that want to comply with the determined guide levels. By doing this aspects such as traffic flow, building type, occupation density, etc. can be defined as a function of the acoustic quality of the zone.

Figure 1: Example of different acoustic zones in Barcelona center.

Figure 2: Deviation map.

REFERENCES


2. Alsina, R, Analysis of environmental noise in Barcelona, In *Barcelona seminar urban noise in european cities*