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ABSTRACT
A parametric mathematical model in terms of the queuing theory is used to describe how the probabilities
of being in given intervals of wear rate are varied in time domain. These intervals are determined via
the percentage of either service life duration or critical crack length. It is assumed that interval-to-
interval transitions meet the properties of Poisson’s flows of events. Flow densities and, in some cases,
characteristics of initial wear distribution are considered as free parameters of the model to be fitted to
observed data. Applied as goodness-of-fit measures are either likelihood-type function developed on the
base of time histories of experimental patterns or chi-square statistic that results from comparison of
observed and expected service life histograms. Model parameters of interest are estimated with the aid
of a numerical optimization procedure.

1 - INTRODUCTION
The problem of prediction of fatigue wear dynamics is very important in practical applications. Informa-
tion on wear time history makes it possible to determine expected service life, establish points of structure
examinations for detection of fatigue damages, etc. Knowledge about probabilities of given wear levels
at different time points constitutes a convenient basis to substantiate corresponding decisions.
Presented here is a statistical modeling technique intended for oscillating structures suffered excitation in
acoustic frequency range. In contrast to traditional ways of fatigue wear prediction, which were developed
on the base of physical models, the approach in question relies on statistical data only. These data may
be obtained from structure tests, field experience and other sources.
Two ways of model identification are under consideration. First of them is based on comparison of
expected and observed histograms describing distributions of service lives. The second one ensures
selection of model parameters yielding the point of extremum of some likelihood-type function.
Presented technique is useful for designers and specialists on exploitation who need a tool for service life
prediction and motivation of decisions concerning the schedule of structure examinations.

2 - MODELS AND METHODS
The analyzed quantity is wear percentage. Available actual range of this quantity is divided into several
intervals Each interval is considered as a separate state in which a wearing structure has some probability
to find itself. For example, if one selects 10% wear range for a typical system state, the state x0 will
correspond to the wear from 0% to 10%, the state x1 − from 10% to 20% and so on. The state x 10 will
correspond to 100% wear. In due course transitions between the states are the case.
The queuing theory yields a convenient mathematical model that may be used to describe dynamics
of these transitions. The model is represented by a graph (an example is presented in Figure 1) in
which nodes (depicted as rectangles) correspond to the states, branches (depicted as arrows) correspond
to transitions. The process of wear development may be imagined as a random walk along the graph
from one state to another following the arrows. Time is supposed to be continuous. State-to-state
transitions are instantaneous and take place at random time points. These transitions are effects of
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environment. To describe them mathematically means to show how the environment have an influence
on a structure. Initial distribution of state probabilities at the starting point of service life reflects initial
wear distribution (parameters of different patterns of the same structure may differ).
It is assumed that state-to-state transitions (corresponding to each branch of the graph) meet the prop-
erties of Poisson’s flows of events. It may be proved [1] that the number of events X in these flows falling
into any interval of the length t adjoining to time point t is distributed according to the law of small
numbers:

Pt,τ (X = m) =
(a (t, τ))m

m!
e−a(t,τ)

where Pt,τ (X = m) is the probability of appearance of m events during the considered interval, a (t, τ) -
mean number of events falling into an interval of the length τ adjoining to time point t. Only stationary
flows (where a (t, τ) = ητ , η=const) will be taken up here. Parameter η is the density of a stationary
flow. It is equal to mean number of events per unit time interval.
Two variants of modeling are of practical importance in studying wear development. They differ in sorts
of initial measured data the modeling is based on.

Figure 1: States xi (i=0,1, . . .,n-1): from 100i/n to 100 (i+1)/n % of wear; state xn: 100% of wear;
λ− wear density, µ− recovery density.

The first one employs histograms describing the distributions of service life duration for sufficiently
large samples of structures. The system shown in Figure 1 is used to model wear development in this
case. The state xn corresponds to wear-out and has no exits. Flow densities are denoted as λ and µ.
Parameter λ shows how the environment promotes the wear. Parameter µ represents the environment
ability to recover the structure (this ability is usually not typical, however it is desirable to be assumed
for completeness of categorization). Since states represent wear ranges in time percentage, flow densities
must be invariable for different states.

Figure 2: States xi (i=0,1, . . .,n-1): from 100i/n to 100 (i+1)/n % of wear; state xn: 100% of wear;
λi − wear flow density.

The second variant employs time histories of damage accumulation in per cent of some critical value of
non-temporal nature (such as critical crack length, for example) for a given set of patterns. Number
of these histories may be sufficiently small. At least, one exemplar is necessary. The system shown in
Figure 2 is used to model corresponding wear development. Parameters λk have the same meaning as in
the first variant.
For the first variant, the following set of ordinary differential equations [1] may be drawn to describe the
time history of state probabilities:

dp0 (t)
dt

= −λp0 (t) + µp1 (t)
dpk (t)

dt
= − (λ + µ) pk (t) + λpk−1 (t) + µpk+1 (t) , (k = 1, 2, . . . , n− 1)

dpn (t)
dt

= λpn−1 (t)

where pk(t) is the probability to be within the state xk at the time point t.
For the second variant the set of equations is simpler:

dp0 (t)
dt

= −λ0p0 (t)
dpk (t)

dt
= −λkpk (t) + λk−1pk−1 (t) , (k = 1, 2, . . . , n− 1)

dpn (t)
dt

= λn−1pn−1 (t)
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In this case flow densities may differ for various indices k : λi 6= λj (i 6= j).
To integrate these equations, one has to assign initial conditions. The normalization condition

n∑

k=0

pk (t) = 1

is valid at any time point.
As for the first variant of modeling, it may be supposed in some situations that starting structure wear
differences are described by a truncated normal distribution with non-negative mean and some standard
deviation σini that is used to characterize initial structure wear due to manufacturing defects. The
distribution is truncated (values within the range from 0% to 100% are acceptable only) and standardized
so as the total probability would be equal to unity.
In the above mentioned terms, estimation wear parameters is brought to the calculation of flow densities
λ and µ, standard deviation σini and mean of the normal distribution. Taken as estimations of these
independent parameters are the values ensuring the best fit of observed data and expected frequencies of
falling into a given state at the specified time points. Expected state probabilities are calculated by means
of numerical integration of one of the presented sets of differential equations. Each of the considered
modeling variants needed its own way to compare observed and expected data, viz.: chi-square measure
was used for the first variant and function of maximum likelihood type − for the second one.
Expected frequency to fall at the k -th state equals to pkN where pk− probability of being in this state, N
− number of cases. Corresponding observed frequencies Fk result from the data describing distributions
of service lives in practice. Under some conditions, the following statistic is distributed asymptotically
according to a chi-square distribution:

n∑

k=0

(Fk − pkN)2 /pkN

One should regard this sum as a goodness-of-fit measure for the first modeling variant in the sense that
its large values correspond to bad fit and its small values correspond to good fit. The number of degrees
of freedom (that is equal to n-l, where l is the total number of independent parameters) serves as a
standard by which one can judge whether such measure is large or small.
Another criterion is necessary for the second modeling variant since there is no sufficient sample for
comparison. In case of one pattern, calculated are the values of λk parameters that ensure maximum of
the likelihood-type function

ML =
J∏

j=1

P z
tj ,z

where Ptj ,z is probability to fall into the interval corresponding to z% of wear at the time moment tj in
which the measurement took place, j=1,. . .,J − numbers of measurement points. One can see that z -th
power of the probability in the expression for the ML function is used as weight to make the states of
greater wear more important than the states of lesser wear.
In case of several patterns, a sum of all ML functions corresponding to each pattern is regarded as the
total ML function:

MLtotal =
I∑

i=1

MLi

The second criterion is less convenient than the first one as it does not give the opportunity to get
goodness-of-fit measure for modeling. Only parameters of the best model may be here estimated.
The employed procedure of computing parameters to be estimated consists of two stages. On the prepara-
tory stage, some numerical integration scheme for the aforementioned differential equations is coded to
calculate all pk using the Microsoftr Excel spreadsheet. The probability functions are computed with
some specified time step h from initial zero time point to the given specified upper time bound. Runge-
Kutta methods [2] (or their equivalents) proved to be sufficient to get acceptable accuracy of solution.
It is of vital importance that Excel supports dynamic links between cell contents. If one locates free
parameters and time step h in the separate cells to which the cells containing formulas for calculation
of pk(t) and initial state probabilities are referred, all the solution will be automatically modified when
values of free parameters are changed.
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On the final stage, a numerical optimization procedure to get required values of free parameters is run.
Obtained values of free parameters are considered as wear characteristics, which have become apparent
during observations.
If parameters of the optimization procedure in use are tuned for running one of the quasi-Newton
algorithm variants [4], finding strict local minima, if any, was guaranteed within the specified accuracy
range. As the procedure finds a point in which the gradient equals to zero, such point is unique in some
neighborhood of the solution that has been found (up to the corresponding numerical method error) [3].

3 - CONCLUSION
Even a single history of pattern wear may be used as a base for estimations of probabilities if the
maximum likelihood−type approach is in use. When a sample of patterns is sufficiently representative,
one can choose the best fitted model comparing the observed data and results of estimations on the base
of different sets of model components to figure out which components are important and which ones
may be dropped. With the aid of statistical criteria, it may be also evaluated whether the model fit is
acceptable or not.
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