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Introduction

Architects as well as acoustical consultants often oper-
ate with room typologies in order to distinguish different
categories such as ’shoe box’, ’vineyard’ or ’fan shape’
designs. These types can be described quite precisely as
architectural designs, and it is often assumed that they
can also be distinguished acoustically, i.e. that a ’shoe
box’ sounds different than a fan-shaped auditorium. To
what extent these categories can be identified based on
room acoustical parameters according to ISO 3382 [1] [2]
has been investigated in the current study. Two super-
vised machine learning approaches, the k-Nearest Neigh-
bor (KNN) and the Support Vector Machine (SVM) clas-
sifiers, were used to classify a set of synthetically gener-
ated rooms into six architectural design categories. The
results bring new insights regarding the question of how
meaningful these categories are from an acoustical point
of view, which of these categories are most easy to iden-
tify, which combinations of room acoustical parameters
are most suitable for this identification, and which of the
two classification approaches is better suited to solve the
task.

Methods

To find the proper parameters for predicting the room
shape, it is necessary to have a dataset which includes
state-of-the-art room acoustic parameters and all the
different room shapes which are primarily in use. The
dataset we used was created in connection with a mas-
ter’s thesis at the Audio Communication department of
the TU Berlin in 2015 (Ackermann and Ilse, 2015 [3]),
called Ground Truth for Room Acoustical Analysis and
Perception (GRAP). The goal of this dataset is to cover
a wide range of acoustic environments. It contains 49
rooms which are categorized in six different shapes and
provides 12 different room-acoustical parameters. The
categories (and therefore classes for the machine learning
problem) of the six room-shapes can be found in Table 1.
The rooms which are labeled as complex, are rooms with
particular geometry which do not fit that of any other
shape category.

The impulse responses on the basis of which all the pa-
rameters were calculated were acquired through digital
models of the rooms. Each room was closely modeled to
an existing original. There were one source (S) and two
receiver points (R1 and R2). The positions were chosen
based on the DIN EN ISO3382-1 (2009) and the DIN EN
ISO 3382-2 (2008). As shown in Figure 1. This results

Table 1: Classes of the six room-shape categories and the
numbers of rooms belonging to the class.

Shape Count

Shoe Box 25
Church 6

Vineyard 3
Opera/ Horse Shoe 7

fan-shaped Auditorium 5
Complex 3

in two datasets: The first one, for which the calculations
are based on receiver position 1 (R1) lying on the same
axis (x) as the source; and the second one, where he cal-
culations are based on the receiver position 2 (R2) on the
right side of the x axis to the source and further away
from the source.

Figure 1: Model of the microphone positions used in GRAP.

The provided parameters are based on the ones recom-
mended in the DIN EN ISO 3382-1 (2009) for describ-
ing the room acoustical impression and quality of per-
formance rooms. Those are shown in Table 2: The pa-
rameters are available with different temporal integration
bounds, resulting in a set of 53 parameters in total. For
most of the parameters there is just one impulse response
required, recorded with an omnidirectional microphone.
For those who require separate lateral-sound information
(JLFC, JLF, LJ), two impulse responses are necessary, one
from an omnidirectional and one from a bidirectional mi-
crophone. For calculating the binaural IACC, impulse
responses from an artificial head are used. Because of
the room acoustic simulation there are no confounding
factors in acquiring the impulse response, therefore this
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dataset leads to a verifiable testing environment and to
consistent results.

Table 2: Provided acoustic parameters and their abbrevia-
tions.

Parameter Abbreviation

Early Decay Time EDT
Reverberation Time T

Clarity C
Deutlichkeit D

Strength G
Centre Time TS

Lateral Energy
Fraction

JLFC,
JLF

Late Lateral
Sound Level

LJ

Interaural Cross-
Correlation Coefficient

IACC, IACCA,
IACCE, IACCL

Bass-ratio
(additionally)

BR

Firstly, the dataset has to be preprocessed prior to classi-
fication. As can be seen in Figure 1, the different classes
had a very varying room count (ranging from 3 rooms of
the class Vineyard to 25 rooms of the class Shoe Box), re-
sulting in a highly unbalanced dataset which can lead to
skewed classification results, due to the classifiers identi-
fying every room as belonging to the greater class, since
that would provide an overall higher accuracy. Therefore,
we had to decrease the maximum number of rooms per
class to 12, which left 36 usable rooms. As can be seen
in Figure 2, the data of position 1 and 2 of the GRAP
dataset are not identical. For that reason, we were able
to use the second position as an independent room ob-
servation, and increase the number of rooms to a total of
58.

Figure 2: Acoustic parameters JLFC and T of GRAP
dataset, position 1 (×) and 2 (·). The distribution of the z-
normalized data shows no overlapping, which indicates inde-
pendent room observations of both receiver positions.

For the first part of our supervised machine learning task
(classifying the room shape based on acoustic parame-
ters), we tested all possible combinations of selected pa-

rameters (EDT, T, C, D, G, TS, BR, IACCA, IACCE,
IACCL, JLFC, JLF, LJ). We allowed all parameter sub-
sets, from a single parameter to all parameters combined.
This led to a total of 8191 combinations. All data were
normalized per z-Score. Figure 3 and 4 show the distri-
bution of the dataset for two parameters. As shown in
Figure 3, we reasoned that a non-linear Support Vector
Machine would be a suitable classifier, based on some of
the data being distributed in a way that a SVM with
a polynomial kernel could provide good class separation
while assuring a low complexity (e.g., lower than an SVM
with a Radial Basis Function (RBF) Kernel).

Figure 3: Scatter plot of the acoustic parameters JLFC and
T of GRAP (the data was z-normalized and reduced to the
classes: Church, Vineyard and Complex). Distribution indi-
cates a SVM classifier, the room data points are distributed
in areas.

As shown in Figure 4, some data is spread around several
centers of clusters, which suggests using a nearest neigh-
bor approach. It must be mentioned that these are just
examples for combinations for two parameters, whereas
the distribution of the data in higher dimensions might
be completely different. Therefore, to find the highest ac-
curacy of all parameters and combinations, we choose to
evaluate an SVM as well as an KNN approach. A SVM
finds a hyperplane which separates the classes through a
kernel transformation, while maximizing the distance be-
tween them. Different settings (such as the cost param-
eter C and the kernel type) define the form of the sepa-
ration surface [4]. The KNN, a non-parametric method,
examines the classes of surrounding samples and selects
a class for a sample depending one the majority of its
neighbors. The number of neighbors, the distance mea-
sure and a weighting of distance can be chosen [4].

To evaluate the performance of the classifier, we calcu-
lated the accuracy (ACC), the ratio between correctly
classified rooms to the total amount of rooms. To re-
duce the risk of overfitting, we wanted to utilize classifiers
with less specific criteria (higher amount of neighbors and
lower degrees of functions). After testing different kinds
of these two classifiers, we chose a SVM with a cubic
kernel function, and a weighted 10-NN with Euclidean
metric and a weighting squared inversely with respect to
distance.
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Figure 4: Scatter plot of the acoustic parameters JLFC and
T of GRAP (the data was z-normalized and reduced to the
classes: Shoe Box, Opera / Horse Shoe and fan-shaped Au-
ditorium). Distribution indicates a KNN classifier, the room
data points are distributed in around centers.

In order to further reduce overfitting, we conducted a
5-fold cross-validation. This validation divides the data
into 5 random groups, in which every group is once the
test set compared to a training set out of the remaining
4 groups. The accuracy is thereby the average accuracy
of those 5 iterations. To even out accuracy variations,
we repeated this test 20 times and generated an average
accuracy out of the 100 trials in total.

Results and Discussion

After the cross-validation, the accuracies varied by up to
29 percentage points for KNN and 62 percentage points
for the SVM per combination. For this reason we com-
pared not only the maximum, but also the average value
for each set. In the following tables (Table 3 and Table 4),
the best 5 combinations to classify the room shapes, re-
sulting from a direct comparison, are shown. As previ-
ously mentioned, the rooms were distributed to 6 classes
with a total of 58 rooms. Shoe Box, Church and Opera
comprised 12 rooms each, Auditorium had 10, Vineyard
and Complex had 6 each.

Table 3: Accuracies for the 5 best parameter combinations
for predicting the shape based on KNN, showing minimum to
maximum (min - max) and average accuracy (avg ACC).

Parameters min - max avg ACC

EDT,G,
BR

0,64 - 0,85 0,74

T,G,
BR

0,64 - 0,79 0,73

EDT,T,
G,BR

0,60 - 0,79 0,71

T,C,G,
IACCE,BR

0,62 - 0,76 0,69

EDT,T,C,
G,BR

0,62 - 0,76 0,68

Table 4: Accuracies for the 5 best parameter combinations
for predicting the shape based on SVM, showing minimum to
maximum (min - max) and average accuracy (avg ACC).

Parameters min - max avg ACC

EDT, T, C, G,
TS, IACCE,
IACCL, BR

0,21 - 0,72 0,65

EDT, C, G,
IACCE,

IACCL, BR

0,17 - 0,72 0,65

EDT,C,G,
TS, IACCE,
IACCL, BR

0,17 - 0,71 0,65

T,C,G,
TS, IACCE,
IACCL, BR

0,17 - 0,72 0,65

EDT, T, C, G,
IACCE, BR

0,17 - 0,72 0,64

As can be seen in Table 3, KNN-weighted creates the best
accuracy with an average of 74 % when using EDT, G,
BR followed by T, G, BR with 73 %. As can be seen in
Table 3, the parameters EDT, T, G and BR are able to
classify the room shape with an average of 74 % accu-
racy. The first and third best combination, as shown in
Table 3, only differentiate in 3 percentage points and one
additional parameter: T. As a result, we are able to con-
clude that T does not significantly increase or decrease
the accuracy of a combination which already included the
parameter EDT, therefore one of those parameters need
not be used. A similar result can be observed for the sec-
ond combination, were EDT is exchanged with T, leading
to a 1 percentage point lower accuracy. With an range
of 21 percent points, these differences are negligible.

To evaluate the meaningfulness of the single categories,
we analyzed the confusion matrix of the best combina-
tion: EDT, G, BR. A confusion matrix shows the pre-
dicted classes for all samples with respect to the actual
class they belong to. At a single test, this combination
created a accuracy of 70 % and a prediction as shown in
Table 5. The model was able to classify all rooms of
the category Auditorium (class 5). Followed by only one
miss-prediction of a Church (class 2) and Vineyard (class
3). This indicates, that those geometrical shapes are dif-
ferent from the rest and easily to identify. On one side,
rooms of the categories Complex (class 6) and Opera /
Horse Shoe (class 4) are less likely to be classified cor-
rectly, which leads to a lower differentiation probability.
On the other side, rooms with the shape of an Opera /
Horse Shoe were likely to be miscategorized to Complex.
This is also shown for the Complex rooms, which were
misclassified to Operas and Horse Shoes. This questions
the consistency of those two classes. Rooms of the shape
Shoe Box (class 1) were the least accurate classified geo-
metric room shape. This concludes a similar behavior to
other rooms, which makes this category less reliable.

The results of the SVM approach (Table 4) are ranked
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Table 5: Confusion Matrix for the best KNN combination
EDT, G, BR. Classes 1-6: Shoe Box, Church, Vineyard,
Opera / Horse Shoe, Auditorium, Complex

true predicted class

1 2 3 4 5 6

1 4 1 2 1 2 2

2 0 11 0 0 1 0

3 1 0 5 0 0 0

4 0 0 1 7 1 3

5 0 0 0 0 10 0

6 0 0 0 3 0 4

by average accuracy. Results exhibit a variation up to
55 percentage points, which makes this approach less ro-
bust, although the average accuracy is still satisfactory
(but lower than the weighted-kNN). As can be observed,
the SVM works better with more parameters/ dimen-
sions. The parameters EDT/T, G, BR are represented
in all superior combinations in this case as well. In this
ranking, the exchangeability of EDT and T can again
be seen in the third and fourth position. The first and
third position also show no advantage of including T to
EDT. In contrast to the results of the KNN, the param-
eters IACCE, IACCL and TS are widely represented in
the best combinations.

Conclusion

The results show that different architectural designs of
musical venues can, to a certain degree, be identified by
room acoustical properties, as represented by parameters
according to ISO 3382–1. We tested two standard ma-
chine learning methods. With an achieved accuracy of
74 %, the KNN weighted approach was more successful
than the cubic SVM. Auditorium, vineyard designs and
churches produced the least misclassifications. The fact
that a combination of EDT / T, G, BR provided the
best results, however, suggests that the successful clas-
sification is, at least partly, due to the fact that certain
designs are systematically correlated with higher or lower
size and reverberation (and thus with T and G), while
parameters assumed to be strongly linked to the geome-
try of the room such as JLFC, JLF or LJ, were not among
the most successful combinations. Hence, the question
whether different architectural designs can be identified
by a different sound, can not be conclusively answered.
Future work in this direction will not only require a con-
siderable extension of the dataset by generating more
rooms, but also more and / or better room acoustical
parameters in order to fully represent the room acousti-
cal impression. With respect to the methodology, future
work will also include other classifiers, such as SVM with
different kernels or neural networks.
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Additional data

This QR-Code embeds all results of this Paper. Be-
sides the results of all possible combinations for KNN
and SVM (Tables 3 and 4), there is a digital copy
of this paper. Alternative link: https://tubcloud.tu-
berlin.de/index.php/s/5WSs6qbF4sHAH8E
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